Schaeffer Evelyne, Sánchez-Fernández Elena M, Gonçalves-Pereira Rita, Flacher Vincent, Lamon Delphine, Duval Monique, Fauny Jean-Daniel, Fernández José M García, Mueller Christopher G, Mellet Carmen Ortiz
sp2-Iminosugar glycolipids as inhibitors of lipopolysaccharide-mediated human dendritic cell activation in vitro and of acute inflammation in mice in vivo Article de journal
Dans: European Journal of Medicinal Chemistry, vol. 169, p. 111–120, 2019, ISSN: 1768-3254.
Résumé | Liens | BibTeX | Étiquettes: Activation, Acute Disease, Animals, antagonists & inhibitors, CD14, Cells, chemical synthesis, Chemistry, CO-RECEPTOR, Cultured, Dendritic cell, Dendritic Cells, Dose-Response Relationship, Drug, drug effects, drug therapy, Glycolipid, Glycolipids, Human, Humans, Iminosugar, immunopathology, IN VITRO, In vivo, Inbred C57BL, inflammation, Interleukin-6, lipopolysaccharide, Lipopolysaccharides, LPS, Male, Maturation, metabolism, Mice, MICROGLIA, Molecular Structure, mouse, pathology, Pharmacology, PRODUCTION, Receptor, signaling, Structure-Activity Relationship, Sulfone, Sulfoxide, Tail, target, Team-Mueller
@article{schaeffer_sp2-iminosugar_2019,
title = {sp2-Iminosugar glycolipids as inhibitors of lipopolysaccharide-mediated human dendritic cell activation in vitro and of acute inflammation in mice in vivo},
author = {Evelyne Schaeffer and Elena M Sánchez-Fernández and Rita Gonçalves-Pereira and Vincent Flacher and Delphine Lamon and Monique Duval and Jean-Daniel Fauny and José M García Fernández and Christopher G Mueller and Carmen Ortiz Mellet},
doi = {10.1016/j.ejmech.2019.02.078},
issn = {1768-3254},
year = {2019},
date = {2019-05-01},
journal = {European Journal of Medicinal Chemistry},
volume = {169},
pages = {111--120},
abstract = {Glycolipid mimetics consisting of a bicyclic polyhydroxypiperidine-cyclic carbamate core and a pseudoanomeric hydrophobic tail, termed sp2-iminosugar glycolipids (sp2-IGLs), target microglia during neuroinflammatory processes. Here we have synthesized and investigated new variants of sp2-IGLs for their ability to suppress the activation of human monocyte-derived dendritic cells (DCs) by lipopolysaccharide (LPS) signaling through Toll-like receptor 4. We report that the best lead was (1R)-1-dodecylsulfonyl-5N,6O-oxomethylidenenojirimycin (DSO2-ONJ), able to inhibit LPS-induced TNFα production and maturation of DCs. Immunovisualization experiments, using a mannoside glycolipid conjugate (MGC) that also suppress LPS-mediated DC activation as control, evidenced a distinct mode of action for the sp2-IGLs: unlike MGCs, DSO2-ONJ did not elicit internalization of the LPS co-receptor CD14 or induce its co-localization with the Toll-like receptor 4. In a mouse model of LPS-induced acute inflammation, DSO2-ONJ demonstrated anti-inflammatory activity by inhibiting the production of the pro-inflammatory interleukin-6. The ensemble of the data highlights sp2-IGLs as a promising new class of molecules against inflammation by interfering in Toll-like receptor intracellular signaling.},
keywords = {Activation, Acute Disease, Animals, antagonists & inhibitors, CD14, Cells, chemical synthesis, Chemistry, CO-RECEPTOR, Cultured, Dendritic cell, Dendritic Cells, Dose-Response Relationship, Drug, drug effects, drug therapy, Glycolipid, Glycolipids, Human, Humans, Iminosugar, immunopathology, IN VITRO, In vivo, Inbred C57BL, inflammation, Interleukin-6, lipopolysaccharide, Lipopolysaccharides, LPS, Male, Maturation, metabolism, Mice, MICROGLIA, Molecular Structure, mouse, pathology, Pharmacology, PRODUCTION, Receptor, signaling, Structure-Activity Relationship, Sulfone, Sulfoxide, Tail, target, Team-Mueller},
pubstate = {published},
tppubtype = {article}
}
Flacher Vincent, Neuberg Patrick, Point Floriane, Daubeuf François, Muller Quentin, Sigwalt David, Fauny Jean-Daniel, Remy Jean-Serge, Frossard Nelly, Wagner Alain, Mueller Christopher G, Schaeffer Evelyne
Mannoside Glycolipid Conjugates Display Anti-inflammatory Activity by Inhibition of Toll-like Receptor-4 Mediated Cell Activation Article de journal
Dans: ACS chemical biology, vol. 10, non 12, p. 2697–2705, 2015, ISSN: 1554-8937.
Résumé | Liens | BibTeX | Étiquettes: Activation, Animals, Anti-Inflammatory Agents, Carbohydrate Sequence, CD14, Cell Membrane, Cells, Chemistry, Cultured, cytokine, Dendritic Cells, development, disease, Glycolipids, Human, Humans, immunopathology, Inbred BALB C, inflammation, inhibition, lipid, lipopolysaccharide, Lipopolysaccharides, LPS, LUNG, Mannosides, Maturation, Membrane, Mice, monocyte, Monocytes, mouse, neutrophils, NF-kappaB, Pneumonia, Protein-Serine-Threonine Kinases, Receptor, secretion, signaling, Structure-Activity Relationship, Tail, Team-Mueller, TLR4, Toll-Like Receptor 4
@article{flacher_mannoside_2015b,
title = {Mannoside Glycolipid Conjugates Display Anti-inflammatory Activity by Inhibition of Toll-like Receptor-4 Mediated Cell Activation},
author = {Vincent Flacher and Patrick Neuberg and Floriane Point and François Daubeuf and Quentin Muller and David Sigwalt and Jean-Daniel Fauny and Jean-Serge Remy and Nelly Frossard and Alain Wagner and Christopher G Mueller and Evelyne Schaeffer},
doi = {10.1021/acschembio.5b00552},
issn = {1554-8937},
year = {2015},
date = {2015-12-01},
journal = {ACS chemical biology},
volume = {10},
number = {12},
pages = {2697--2705},
abstract = {Inhibition of excessive Toll-like receptor 4 (TLR4) signaling is a therapeutic approach pursued for many inflammatory diseases. We report that Mannoside Glycolipid Conjugates (MGCs) selectively blocked TLR4-mediated activation of human monocytes and monocyte-derived dendritic cells (DCs) by lipopolysaccharide (LPS). They potently suppressed pro-inflammatory cytokine secretion and maturation of DCs exposed to LPS, leading to impaired T cell stimulation. MGCs did not interfere with LPS and could act in a delayed manner, hours after LPS stimulation. Their inhibitory action required both the sugar heads and the lipid chain, although the nature of the sugar and the structure of the lipid tail could be modified. They blocked early signaling events at the cell membrane, enhanced internalization of CD14 receptors, and prevented colocalization of CD14 and TLR4, thereby abolishing NF-κB nuclear translocation. When the best lead conjugate was tested in a mouse model of LPS-induced acute lung inflammation, it displayed an anti-inflammatory action by suppressing the recruitment of neutrophils. Thus, MGCs could serve as promising leads for the development of selective TLR4 antagonistic agents for inflammatory diseases.},
keywords = {Activation, Animals, Anti-Inflammatory Agents, Carbohydrate Sequence, CD14, Cell Membrane, Cells, Chemistry, Cultured, cytokine, Dendritic Cells, development, disease, Glycolipids, Human, Humans, immunopathology, Inbred BALB C, inflammation, inhibition, lipid, lipopolysaccharide, Lipopolysaccharides, LPS, LUNG, Mannosides, Maturation, Membrane, Mice, monocyte, Monocytes, mouse, neutrophils, NF-kappaB, Pneumonia, Protein-Serine-Threonine Kinases, Receptor, secretion, signaling, Structure-Activity Relationship, Tail, Team-Mueller, TLR4, Toll-Like Receptor 4},
pubstate = {published},
tppubtype = {article}
}
Keravis Thérèse, Monneaux Fanny, Yougbaré Issaka, Gazi Lucien, Bourguignon Jean-Jacques, Muller Sylviane, Lugnier Claire
Disease progression in MRL/lpr lupus-prone mice is reduced by NCS 613, a specific cyclic nucleotide phosphodiesterase type 4 (PDE4) inhibitor Article de journal
Dans: PloS One, vol. 7, non 1, p. e28899, 2012, ISSN: 1932-6203.
Résumé | Liens | BibTeX | Étiquettes: Adenine, Animals, Cyclic AMP, Cyclic Nucleotide Phosphodiesterases, Disease Progression, Female, Humans, I2CT, Inbred CBA, Inbred MRL lpr, Isoenzymes, Kidney, Lipopolysaccharides, Lupus Erythematosus, Mice, Monneaux, Pentoxifylline, Phosphodiesterase 4 Inhibitors, Proteinuria, Survival Rate, Systemic, Team-Dumortier, Tumor Necrosis Factor-alpha, Type 4, Xanthines
@article{keravis_disease_2012,
title = {Disease progression in MRL/lpr lupus-prone mice is reduced by NCS 613, a specific cyclic nucleotide phosphodiesterase type 4 (PDE4) inhibitor},
author = {Thérèse Keravis and Fanny Monneaux and Issaka Yougbaré and Lucien Gazi and Jean-Jacques Bourguignon and Sylviane Muller and Claire Lugnier},
doi = {10.1371/journal.pone.0028899},
issn = {1932-6203},
year = {2012},
date = {2012-01-01},
journal = {PloS One},
volume = {7},
number = {1},
pages = {e28899},
abstract = {Systemic lupus erythematosus is a polymorphic and multigenic inflammatory autoimmune disease. Cyclic AMP (cAMP) modulates inflammation and the inhibition of cyclic nucleotide phosphodiesterase type 4 (PDE4), which specifically hydrolyzes cAMP, inhibits TNFα secretion. This study was aimed at investigating the evolution of PDE activity and expression levels during the course of the disease in MRL/lpr lupus-prone mice, and to evaluate in these mice the biological and clinical effects of treatments with pentoxifylline, denbufylline and NCS 613 PDE inhibitors. This study reveals that compared to CBA/J control mice, kidney PDE4 activity of MRL/lpr mice increases with the disease progression. Furthermore, it showed that the most potent and selective PDE4 inhibitor NCS 613 is also the most effective molecule in decreasing proteinuria and increasing survival rate of MRL/lpr mice. NCS 613 is a potent inhibitor, which is more selective for the PDE4C subtype (IC₅₀= 1.4 nM) than the other subtypes (PDE4A, IC₅₀= 44 nM; PDE4B, IC₅₀= 48 nM; and PDE4D, IC₅₀= 14 nM). Interestingly, its affinity for the High Affinity Rolipram Binding Site is relatively low (K(i) = 148 nM) in comparison to rolipram (K(i) = 3 nM). Finally, as also observed using MRL/lpr peripheral blood lymphocytes (PBLs), NCS 613 inhibits basal and LPS-induced TNFα secretion from PBLs of lupus patients, suggesting a therapeutic potential of NCS 613 in systemic lupus. This study reveals that PDE4 represent a potential therapeutic target in lupus disease.},
keywords = {Adenine, Animals, Cyclic AMP, Cyclic Nucleotide Phosphodiesterases, Disease Progression, Female, Humans, I2CT, Inbred CBA, Inbred MRL lpr, Isoenzymes, Kidney, Lipopolysaccharides, Lupus Erythematosus, Mice, Monneaux, Pentoxifylline, Phosphodiesterase 4 Inhibitors, Proteinuria, Survival Rate, Systemic, Team-Dumortier, Tumor Necrosis Factor-alpha, Type 4, Xanthines},
pubstate = {published},
tppubtype = {article}
}
Kwan W H, Boix C, Gougelet N, Fridman W H, Mueller C G
LPS induces rapid IL-10 release by M-CSF-conditioned tolerogenic dendritic cell precursors Article de journal
Dans: Journal of Leukocyte Biology, vol. 82, non 0741-5400 (Print), p. 133–141, 2007.
Résumé | BibTeX | Étiquettes: Activation, APC, Cell Differentiation, COLONY-STIMULATING FACTOR, cytokine, Cytokines, cytology, Dendritic Cells, Differentiation, GM-CSF, Human, Humans, IL-10, IL10, IMMATURE, immune response, Immune Tolerance, Immunity, Immunology, inflammation, interleukin 10, Interleukin-10, lipopolysaccharide, Lipopolysaccharides, LPS, Macrophage, Macrophage Colony-Stimulating Factor, Maturation, metabolism, MODULATION, monocyte, Monocytes, MYCOBACTERIA, Mycobacterium, Myeloid Cells, Pharmacology, precursor, PRODUCTION, Protein, Receptor, Secondary, T CELL ACTIVATION, Team-Mueller
@article{kwan_lps_2007,
title = {LPS induces rapid IL-10 release by M-CSF-conditioned tolerogenic dendritic cell precursors},
author = {W H Kwan and C Boix and N Gougelet and W H Fridman and C G Mueller},
year = {2007},
date = {2007-07-01},
journal = {Journal of Leukocyte Biology},
volume = {82},
number = {0741-5400 (Print)},
pages = {133--141},
abstract = {Dendritic cells (DC) obtained by culturing myeloid precursors in GM-CSF undergo maturation and induce an efficient T cell response when stimulated with microbial products. DC precursors themselves also recognize microbial products, and it remains unclear how these stimulated DC precursors modulate the immune response. We show here that M-CSF-conditioned human DC precursors responded to LPS, Mycobacteria bovis, and inflammatory cytokines by a rapid and robust production of IL-10, largely superior to that observed with immature DC or monocytes. The endogenous IL-10 restrained the DC precursors from converting into professional APC, as blocking the IL-10 receptor in the presence of LPS resulted in the formation of efficient T cell stimulators. LPS stimulation concomitant with DC differentiation gave rise to immature DC, which were tolerant to a secondary LPS exposure. Furthermore, the LPS-activated DC precursors reduced bystander DC maturation and anti-CD3/CD28-triggered T cell activation. These data suggest that when exposed to inflammatory or microbial signals, M-CSF-conditioned DC precursors can participate in the modulation of inflammation and immune response by rapid release of IL-10},
keywords = {Activation, APC, Cell Differentiation, COLONY-STIMULATING FACTOR, cytokine, Cytokines, cytology, Dendritic Cells, Differentiation, GM-CSF, Human, Humans, IL-10, IL10, IMMATURE, immune response, Immune Tolerance, Immunity, Immunology, inflammation, interleukin 10, Interleukin-10, lipopolysaccharide, Lipopolysaccharides, LPS, Macrophage, Macrophage Colony-Stimulating Factor, Maturation, metabolism, MODULATION, monocyte, Monocytes, MYCOBACTERIA, Mycobacterium, Myeloid Cells, Pharmacology, precursor, PRODUCTION, Protein, Receptor, Secondary, T CELL ACTIVATION, Team-Mueller},
pubstate = {published},
tppubtype = {article}
}
Croker Ben, Crozat Karine, Berger Michael, Xia Yu, Sovath Sosathya, Schaffer Lana, Eleftherianos Ioannis, Imler Jean-Luc, Beutler Bruce
ATP-sensitive potassium channels mediate survival during infection in mammals and insects Article de journal
Dans: Nature Genetics, vol. 39, non 12, p. 1453–1460, 2007, ISSN: 1546-1718.
Résumé | Liens | BibTeX | Étiquettes: Animals, ATP-Binding Cassette Transporters, Cloning, Coronary Vessels, Crosses, Ethylnitrosourea, Genetic, Homozygote, imler, infection, Inwardly Rectifying, KATP Channels, Lipopolysaccharides, M3i, Mice, Molecular, Mutagenesis, Potassium Channels, Sulfonylurea Receptors
@article{croker_atp-sensitive_2007,
title = {ATP-sensitive potassium channels mediate survival during infection in mammals and insects},
author = {Ben Croker and Karine Crozat and Michael Berger and Yu Xia and Sosathya Sovath and Lana Schaffer and Ioannis Eleftherianos and Jean-Luc Imler and Bruce Beutler},
doi = {10.1038/ng.2007.25},
issn = {1546-1718},
year = {2007},
date = {2007-01-01},
journal = {Nature Genetics},
volume = {39},
number = {12},
pages = {1453--1460},
abstract = {Specific homeostatic mechanisms confer stability in innate immune responses, preventing injury or death from infection. Here we identify, from a screen of N-ethyl-N-nitrosourea-mutagenized mice, a mutation causing both profound susceptibility to infection by mouse cytomegalovirus and approximately 20,000-fold sensitization to lipopolysaccharide (LPS), poly(I.C) and immunostimulatory (CpG) DNA. The LPS hypersensitivity phenotype is not suppressed by mutations in Myd88, Trif, Tnf, Tnfrsf1a, Ifnb, Ifng or Stat1, genes contributing to LPS responses, and results from an abnormality extrinsic to hematopoietic cells. The phenotype is due to a null allele of Kcnj8, encoding Kir6.1, a protein that combines with SUR2 to form an ATP-sensitive potassium channel (K(ATP)) expressed in coronary artery smooth muscle and endothelial cells. In Drosophila melanogaster, suppression of dSUR by RNA interference similarly causes hypersensitivity to infection by flock house virus. Thus, K(ATP) evolved to serve a homeostatic function during infection, and in mammals it prevents coronary artery vasoconstriction induced by cytokines dependent on TLR and/or MDA5 immunoreceptors.},
keywords = {Animals, ATP-Binding Cassette Transporters, Cloning, Coronary Vessels, Crosses, Ethylnitrosourea, Genetic, Homozygote, imler, infection, Inwardly Rectifying, KATP Channels, Lipopolysaccharides, M3i, Mice, Molecular, Mutagenesis, Potassium Channels, Sulfonylurea Receptors},
pubstate = {published},
tppubtype = {article}
}
Durand Stéphanie H, Flacher Vincent, Roméas Annick, Carrouel Florence, Colomb Evelyne, Vincent Claude, Magloire Henry, Couble Marie-Lise, Bleicher Françoise, Staquet Marie-Jeanne, Lebecque Serge, Farges Jean-Christophe
Lipoteichoic acid increases TLR and functional chemokine expression while reducing dentin formation in in vitro differentiated human odontoblasts Article de journal
Dans: Journal of Immunology (Baltimore, Md.: 1950), vol. 176, non 5, p. 2880–2887, 2006, ISSN: 0022-1767.
Résumé | Liens | BibTeX | Étiquettes: Activation, Analysis, bacteria, Biosynthesis, BLOOD, Blood Vessels, Cell Differentiation, Cells, Chemistry, chemokines, COLLAGEN, Cultured, CXCL10, cytology, Dendritic Cells, DENTAL PULP, Dentin, development, Down-Regulation, Expression, extracellular, EXTRACELLULAR MATRIX, Extracellular Matrix Proteins, function, Gene, Gene Expression, Genes, Genetics, Gram-Positive Bacteria, Human, Humans, IMMATURE, Immunology, IN VITRO, In vivo, Innate immune response, lipopolysaccharide, Lipopolysaccharides, metabolism, migration, Odontoblasts, Organ Culture Techniques, Pharmacology, physiology, PRODUCTION, Protein, Proteins, Receptor, recognition, synthesis, Team-Mueller, Teichoic Acids, TLR7, Toll-Like Receptor 2, Up-Regulation
@article{durand_lipoteichoic_2006,
title = {Lipoteichoic acid increases TLR and functional chemokine expression while reducing dentin formation in in vitro differentiated human odontoblasts},
author = {Stéphanie H Durand and Vincent Flacher and Annick Roméas and Florence Carrouel and Evelyne Colomb and Claude Vincent and Henry Magloire and Marie-Lise Couble and Françoise Bleicher and Marie-Jeanne Staquet and Serge Lebecque and Jean-Christophe Farges},
doi = {10.4049/jimmunol.176.5.2880},
issn = {0022-1767},
year = {2006},
date = {2006-03-01},
journal = {Journal of Immunology (Baltimore, Md.: 1950)},
volume = {176},
number = {5},
pages = {2880--2887},
abstract = {Gram-positive bacteria entering the dentinal tissue during the carious process are suspected to influence the immune response in human dental pulp. Odontoblasts situated at the pulp/dentin interface are the first cells encountered by these bacteria and therefore could play a crucial role in this response. In the present study, we found that in vitro-differentiated odontoblasts constitutively expressed the pattern recognition receptor TLR1-6 and 9 genes but not TLR7, 8, and 10. Furthermore, lipoteichoic acid (LTA), a wall component of Gram-positive bacteria, triggered the activation of the odontoblasts. LTA up-regulated the expression of its own receptor TLR2, as well as the production of several chemokines. In particular, an increased amount of CCL2 and CXCL10 was detected in supernatants from LTA-stimulated odontoblasts, and those supernatants augmented the migration of immature dendritic cells in vitro compared with controls. Clinical relevance of these observations came from immunohistochemical analysis showing that CCL2 was expressed in vivo by odontoblasts and blood vessels present under active carious lesions but not in healthy dental pulps. In contrast with this inflammatory response, gene expression of major dentin matrix components (type I collagen, dentin sialophosphoprotein) and TGF-beta1 was sharply down-regulated in odontoblasts by LTA. Taken together, these data suggest that odontoblasts activated through TLR2 by Gram-positive bacteria LTA are able to initiate an innate immune response by secreting chemokines that recruit immature dendritic cells while down-regulating their specialized functions of dentin matrix synthesis and mineralization.},
keywords = {Activation, Analysis, bacteria, Biosynthesis, BLOOD, Blood Vessels, Cell Differentiation, Cells, Chemistry, chemokines, COLLAGEN, Cultured, CXCL10, cytology, Dendritic Cells, DENTAL PULP, Dentin, development, Down-Regulation, Expression, extracellular, EXTRACELLULAR MATRIX, Extracellular Matrix Proteins, function, Gene, Gene Expression, Genes, Genetics, Gram-Positive Bacteria, Human, Humans, IMMATURE, Immunology, IN VITRO, In vivo, Innate immune response, lipopolysaccharide, Lipopolysaccharides, metabolism, migration, Odontoblasts, Organ Culture Techniques, Pharmacology, physiology, PRODUCTION, Protein, Proteins, Receptor, recognition, synthesis, Team-Mueller, Teichoic Acids, TLR7, Toll-Like Receptor 2, Up-Regulation},
pubstate = {published},
tppubtype = {article}
}
Dumortier Hélène, van Mierlo Geertje J D, Egan Deirdre, van Ewijk Willem, Toes René E M, Offringa Rienk, Melief Cornelis J M
Dans: Journal of Immunology (Baltimore, Md.: 1950), vol. 175, non 2, p. 855–863, 2005, ISSN: 0022-1767.
Résumé | Liens | BibTeX | Étiquettes: Adenovirus E1A Proteins, Animals, Antigen, Antigen Presentation, CD8-Positive T-Lymphocytes, Cell Differentiation, Cell Line, Cell Movement, Clonal Deletion, Cytotoxic, Cytotoxicity, Dendritic Cells, Down-Regulation, Dumortier, Epitopes, Female, I2CT, Immunologic, Immunologic Memory, Inbred C57BL, Lipopolysaccharides, Lymphocyte Activation, Mice, Myeloid Cells, Receptors, Regulatory, T-Cell, T-Lymphocyte, T-Lymphocytes, Team-Dumortier, transgenic
@article{dumortier_antigen_2005,
title = {Antigen presentation by an immature myeloid dendritic cell line does not cause CTL deletion in vivo, but generates CD8+ central memory-like Ŧ cells that can be rescued for full effector function},
author = {Hélène Dumortier and Geertje J D van Mierlo and Deirdre Egan and Willem van Ewijk and René E M Toes and Rienk Offringa and Cornelis J M Melief},
doi = {10.4049/jimmunol.175.2.855},
issn = {0022-1767},
year = {2005},
date = {2005-01-01},
journal = {Journal of Immunology (Baltimore, Md.: 1950)},
volume = {175},
number = {2},
pages = {855--863},
abstract = {Immature dendritic cells (DC), in contrast to their mature counterparts, are incapable of mobilizing a CD8+ CTL response, and, instead, have been reported to induce CTL tolerance. We directly addressed the impact of immature vs mature DC on CTL responses by infusing adenovirus peptide-loaded DC (of the D1 cell line) into mice that had received adenovirus-specific naive TCR-transgenic CD8+ T cells. Whereas i.v. injection of mature DC triggered vigorous CTL expansion, immature DC elicited little proliferation involving only a minority of the TCR-transgenic CTL. Even though the latter CTL developed effector functions, including cytolytic activity and proinflammatory cytokine secretion, these cells differed significantly from CTL primed by mature DC in that they did not exhibit down-regulation of CD62L and CCR7, receptors involved in trapping of T cells in the lymphoid organs. Interestingly, adoptive transfer of CTL effector cells harvested after priming by either mature or immature DC into naive recipient mice, followed by exposure to adenovirus, yielded quantitatively and qualitatively indistinguishable CTL memory responses. Therefore, in vivo priming of naive CD8+ T cells by immature DC, although failing to induce a full-blown, systemic CTL response, resulted in the formation of central memory-like T cells that were able to expand and produce IFN-gamma upon secondary antigenic stimulation.},
keywords = {Adenovirus E1A Proteins, Animals, Antigen, Antigen Presentation, CD8-Positive T-Lymphocytes, Cell Differentiation, Cell Line, Cell Movement, Clonal Deletion, Cytotoxic, Cytotoxicity, Dendritic Cells, Down-Regulation, Dumortier, Epitopes, Female, I2CT, Immunologic, Immunologic Memory, Inbred C57BL, Lipopolysaccharides, Lymphocyte Activation, Mice, Myeloid Cells, Receptors, Regulatory, T-Cell, T-Lymphocyte, T-Lymphocytes, Team-Dumortier, transgenic},
pubstate = {published},
tppubtype = {article}
}
Imler Jean-Luc, Tauszig Servane, Jouanguy Emmanuelle, Forestier C, Hoffmann Jules A
LPS-induced immune response in Drosophila Article de journal
Dans: Journal of Endotoxin Research, vol. 6, non 6, p. 459–462, 2000, ISSN: 0968-0519.
Résumé | BibTeX | Étiquettes: Animals, Biological, Cell Line, Cell Surface, Defensins, Genes, Genetic, hoffmann, imler, Insect, Insect Proteins, Lipopolysaccharides, M3i, Membrane Glycoproteins, Models, Mutation, Promoter Regions, Receptors, Signal Transduction, Toll-Like Receptors
@article{imler_lps-induced_2000,
title = {LPS-induced immune response in Drosophila},
author = {Jean-Luc Imler and Servane Tauszig and Emmanuelle Jouanguy and C Forestier and Jules A Hoffmann},
issn = {0968-0519},
year = {2000},
date = {2000-01-01},
journal = {Journal of Endotoxin Research},
volume = {6},
number = {6},
pages = {459--462},
abstract = {The study of the regulation of the inducible synthesis of antimicrobial peptides in Drosophila melanogaster has established this insect as a powerful model in which to study innate immunity. In particular, the molecular characterization of the regulatory pathway controlling the antifungal peptide drosomycin has revealed the importance of Toll receptors in innate immunity. We report here that injection of LPS into flies induces an immune response, suggesting that LPS receptors are used in Drosophila to detect Gram-negative bacteria infection. We have identified in the recently sequenced genome of Drosophila eight genes coding for Toll-like receptors in addition to Toll, which may function as LPS receptors. However, overexpression of a selection of these genes in tissue-culture cells does not result in up-regulation of the antibacterial peptide genes. These results are discussed in light of the recent data from genetic screens aimed at identifying the genes controlling the antibacterial response in Drosophila.},
keywords = {Animals, Biological, Cell Line, Cell Surface, Defensins, Genes, Genetic, hoffmann, imler, Insect, Insect Proteins, Lipopolysaccharides, M3i, Membrane Glycoproteins, Models, Mutation, Promoter Regions, Receptors, Signal Transduction, Toll-Like Receptors},
pubstate = {published},
tppubtype = {article}
}
Imler Jean-Luc, Hoffmann Jules A
Toll and Toll-like proteins: an ancient family of receptors signaling infection Article de journal
Dans: Reviews in Immunogenetics, vol. 2, non 3, p. 294–304, 2000, ISSN: 1398-1714.
Résumé | BibTeX | Étiquettes: Adaptor Proteins, Animals, Antigens, Autoantigens, CD14, Cell Adhesion Molecules, Cell Surface, Differentiation, DNA-Binding Proteins, Gene Expression Regulation, hoffmann, I-kappa B Proteins, imler, Immunity, Immunologic, infection, Innate, Insect Proteins, Interleukin-1 Receptor-Associated Kinases, Knockout, Larva, Lipopolysaccharides, M3i, Mammals, MAP Kinase Signaling System, Membrane Glycoproteins, Membrane Proteins, Mice, Multigene Family, Myeloid Differentiation Factor 88, NF-kappa B, peptidoglycan, Phosphorylation, Post-Translational, Protein Kinases, Protein Processing, Protein Structure, Receptors, Recombinant Fusion Proteins, Signal Transducing, Signal Transduction, Teichoic Acids, Tertiary, Toll-Like Receptor 4, Toll-Like Receptor 5, Toll-Like Receptor 6, Toll-Like Receptor 9, Toll-Like Receptors, Ubiquitins
@article{imler_toll_2000,
title = {Toll and Toll-like proteins: an ancient family of receptors signaling infection},
author = {Jean-Luc Imler and Jules A Hoffmann},
issn = {1398-1714},
year = {2000},
date = {2000-01-01},
journal = {Reviews in Immunogenetics},
volume = {2},
number = {3},
pages = {294--304},
abstract = {Innate immunity is the first-line host defense of multicellular organisms that rapidly operates to limit infection upon exposure to microbes. It involves intracellular signaling pathways in the fruit-fly Drosophila and in mammals that show striking similarities. Recent genetic and biochemical data have revealed, in particular, that proteins of the Toll family play a critical role in the immediate response to infection. We review here the recent developments on the structural and functional characterization of this evolutionary ancient and important family of proteins, which can function as cytokine receptors (Toll in Drosophila) or pattern recognition receptors (TLR4 in mammals) and activate similar, albeit non identical signal transduction pathways, in flies and mammals.},
keywords = {Adaptor Proteins, Animals, Antigens, Autoantigens, CD14, Cell Adhesion Molecules, Cell Surface, Differentiation, DNA-Binding Proteins, Gene Expression Regulation, hoffmann, I-kappa B Proteins, imler, Immunity, Immunologic, infection, Innate, Insect Proteins, Interleukin-1 Receptor-Associated Kinases, Knockout, Larva, Lipopolysaccharides, M3i, Mammals, MAP Kinase Signaling System, Membrane Glycoproteins, Membrane Proteins, Mice, Multigene Family, Myeloid Differentiation Factor 88, NF-kappa B, peptidoglycan, Phosphorylation, Post-Translational, Protein Kinases, Protein Processing, Protein Structure, Receptors, Recombinant Fusion Proteins, Signal Transducing, Signal Transduction, Teichoic Acids, Tertiary, Toll-Like Receptor 4, Toll-Like Receptor 5, Toll-Like Receptor 6, Toll-Like Receptor 9, Toll-Like Receptors, Ubiquitins},
pubstate = {published},
tppubtype = {article}
}
Georgel Philippe, Kappler Christine, Langley E, Gross I, Nicolas E, Reichhart Jean-Marc, Hoffmann Jules A
Drosophila immunity. A sequence homologous to mammalian interferon consensus response element enhances the activity of the diptericin promoter Article de journal
Dans: Nucleic Acids Res., vol. 23, non 7, p. 1140–1145, 1995, ISSN: 0305-1048.
Résumé | BibTeX | Étiquettes: Animals, Base Sequence, CCAAT-Enhancer-Binding Proteins, DNA, DNA-Binding Proteins, Genes, Genetic, hoffmann, Immunity, Insect, Insect Hormones, Insect Proteins, interferons, Lipopolysaccharides, M3i, NF-kappa B, Nuclear Proteins, Plasmids, Promoter Regions, reichhart, Up-Regulation
@article{georgel_drosophila_1995,
title = {Drosophila immunity. A sequence homologous to mammalian interferon consensus response element enhances the activity of the diptericin promoter},
author = {Philippe Georgel and Christine Kappler and E Langley and I Gross and E Nicolas and Jean-Marc Reichhart and Jules A Hoffmann},
issn = {0305-1048},
year = {1995},
date = {1995-04-01},
journal = {Nucleic Acids Res.},
volume = {23},
number = {7},
pages = {1140--1145},
abstract = {Bacterial challenge of larvae or adults of Drosophila induces the rapid transcription of several genes encoding antibacterial peptides with a large spectrum of activity. One of these peptides, the 82-residue anti-gram negative diptericin, is encoded by a single intronless gene and we are investigating the control of expression of this gene. Previous studies using both transgenic experiments and footprint analysis have highlighted the role in the induction of this gene of a 30 nucleotide region which contains three partially overlapping motifs with sequence homology to mammalian NF-kappa B and NF-IL6 response elements and to the GAAANN sequence present in the interferon consensus response elements of some mammalian interferon-induced genes. We now show that the latter sequence binds in immune responsive tissues (fat body, blood cells) of Drosophila a approximately 45 kDa polypeptide which cross-reacts with a polyserum directed against mammalian interferon Regulatory Factor-I. Using a transfection assay of Drosophila tumorous blood cells, we show that the GAAANN sequence positively regulates the activity of the diptericin promoter. We propose that this motif cooperatively interacts with the other response elements in the regulation of the diptericin gene expression.},
keywords = {Animals, Base Sequence, CCAAT-Enhancer-Binding Proteins, DNA, DNA-Binding Proteins, Genes, Genetic, hoffmann, Immunity, Insect, Insect Hormones, Insect Proteins, interferons, Lipopolysaccharides, M3i, NF-kappa B, Nuclear Proteins, Plasmids, Promoter Regions, reichhart, Up-Regulation},
pubstate = {published},
tppubtype = {article}
}
Kappler Christine, Meister Marie, Lagueux Marie, Gateff E, Hoffmann Jules A, Reichhart Jean-Marc
Insect immunity. Two 17 bp repeats nesting a kappa B-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteria-challenged Drosophila Article de journal
Dans: EMBO J., vol. 12, non 4, p. 1561–1568, 1993, ISSN: 0261-4189.
Résumé | BibTeX | Étiquettes: Animals, Anti-Bacterial Agents, Base Sequence, Cloning, Gene Expression Regulation, Genes, Genetic, Genetically Modified, hoffmann, Insect, Insect Hormones, Insect Proteins, Lipopolysaccharides, M3i, messenger, Molecular, NF-kappa B, Nucleic Acid, Oligodeoxyribonucleotides, Promoter Regions, Regulatory Sequences, reichhart, RNA, Transfection
@article{kappler_insect_1993,
title = {Insect immunity. Two 17 bp repeats nesting a kappa B-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteria-challenged Drosophila},
author = {Christine Kappler and Marie Meister and Marie Lagueux and E Gateff and Jules A Hoffmann and Jean-Marc Reichhart},
issn = {0261-4189},
year = {1993},
date = {1993-04-01},
journal = {EMBO J.},
volume = {12},
number = {4},
pages = {1561--1568},
abstract = {The Drosophila diptericin gene codes for a 9 kDa antibacterial peptide and is rapidly and transiently expressed in larvae and adults after bacterial challenge. It is also induced in a tumorous Drosophila blood cell line by the addition of lipopolysaccharide (LPS). The promoter of this gene contains two 17 bp repeats located closely upstream of the TATA-box and harbouring a decameric kappa B-related sequence. This study reports that the replacement of the two 17 bp repeats by random sequences abolishes bacteria inducibility in transgenic fly lines. In transfected tumorous blood cells, the replacement of both or either of the 17 bp motifs reduces dramatically LPS inducibility, whereas multiple copies significantly increase the level of transcriptional activation by LPS challenge. A specific DNA-protein binding activity is evidenced in cytoplasmic and nuclear extracts of induced blood cells and fat body. It is absent in controls. It is proposed that induction of the diptericin gene mediated by the two 17 bp repeats occurs via a mechanism similar to that of mammalian NF-kappa B.},
keywords = {Animals, Anti-Bacterial Agents, Base Sequence, Cloning, Gene Expression Regulation, Genes, Genetic, Genetically Modified, hoffmann, Insect, Insect Hormones, Insect Proteins, Lipopolysaccharides, M3i, messenger, Molecular, NF-kappa B, Nucleic Acid, Oligodeoxyribonucleotides, Promoter Regions, Regulatory Sequences, reichhart, RNA, Transfection},
pubstate = {published},
tppubtype = {article}
}