Schaeffer Evelyne, Sánchez-Fernández Elena M, Gonçalves-Pereira Rita, Flacher Vincent, Lamon Delphine, Duval Monique, Fauny Jean-Daniel, Fernández José M García, Mueller Christopher G, Mellet Carmen Ortiz
sp2-Iminosugar glycolipids as inhibitors of lipopolysaccharide-mediated human dendritic cell activation in vitro and of acute inflammation in mice in vivo Article de journal
Dans: European Journal of Medicinal Chemistry, vol. 169, p. 111–120, 2019, ISSN: 1768-3254.
Résumé | Liens | BibTeX | Étiquettes: Activation, Acute Disease, Animals, antagonists & inhibitors, CD14, Cells, chemical synthesis, Chemistry, CO-RECEPTOR, Cultured, Dendritic cell, Dendritic Cells, Dose-Response Relationship, Drug, drug effects, drug therapy, Glycolipid, Glycolipids, Human, Humans, Iminosugar, immunopathology, IN VITRO, In vivo, Inbred C57BL, inflammation, Interleukin-6, lipopolysaccharide, Lipopolysaccharides, LPS, Male, Maturation, metabolism, Mice, MICROGLIA, Molecular Structure, mouse, pathology, Pharmacology, PRODUCTION, Receptor, signaling, Structure-Activity Relationship, Sulfone, Sulfoxide, Tail, target, Team-Mueller
@article{schaeffer_sp2-iminosugar_2019,
title = {sp2-Iminosugar glycolipids as inhibitors of lipopolysaccharide-mediated human dendritic cell activation in vitro and of acute inflammation in mice in vivo},
author = {Evelyne Schaeffer and Elena M Sánchez-Fernández and Rita Gonçalves-Pereira and Vincent Flacher and Delphine Lamon and Monique Duval and Jean-Daniel Fauny and José M García Fernández and Christopher G Mueller and Carmen Ortiz Mellet},
doi = {10.1016/j.ejmech.2019.02.078},
issn = {1768-3254},
year = {2019},
date = {2019-05-01},
journal = {European Journal of Medicinal Chemistry},
volume = {169},
pages = {111--120},
abstract = {Glycolipid mimetics consisting of a bicyclic polyhydroxypiperidine-cyclic carbamate core and a pseudoanomeric hydrophobic tail, termed sp2-iminosugar glycolipids (sp2-IGLs), target microglia during neuroinflammatory processes. Here we have synthesized and investigated new variants of sp2-IGLs for their ability to suppress the activation of human monocyte-derived dendritic cells (DCs) by lipopolysaccharide (LPS) signaling through Toll-like receptor 4. We report that the best lead was (1R)-1-dodecylsulfonyl-5N,6O-oxomethylidenenojirimycin (DSO2-ONJ), able to inhibit LPS-induced TNFα production and maturation of DCs. Immunovisualization experiments, using a mannoside glycolipid conjugate (MGC) that also suppress LPS-mediated DC activation as control, evidenced a distinct mode of action for the sp2-IGLs: unlike MGCs, DSO2-ONJ did not elicit internalization of the LPS co-receptor CD14 or induce its co-localization with the Toll-like receptor 4. In a mouse model of LPS-induced acute inflammation, DSO2-ONJ demonstrated anti-inflammatory activity by inhibiting the production of the pro-inflammatory interleukin-6. The ensemble of the data highlights sp2-IGLs as a promising new class of molecules against inflammation by interfering in Toll-like receptor intracellular signaling.},
keywords = {Activation, Acute Disease, Animals, antagonists & inhibitors, CD14, Cells, chemical synthesis, Chemistry, CO-RECEPTOR, Cultured, Dendritic cell, Dendritic Cells, Dose-Response Relationship, Drug, drug effects, drug therapy, Glycolipid, Glycolipids, Human, Humans, Iminosugar, immunopathology, IN VITRO, In vivo, Inbred C57BL, inflammation, Interleukin-6, lipopolysaccharide, Lipopolysaccharides, LPS, Male, Maturation, metabolism, Mice, MICROGLIA, Molecular Structure, mouse, pathology, Pharmacology, PRODUCTION, Receptor, signaling, Structure-Activity Relationship, Sulfone, Sulfoxide, Tail, target, Team-Mueller},
pubstate = {published},
tppubtype = {article}
}
Reynard Olivier, Schaeffer Evelyne, Volchkova Valentina A, Cimarelli Andrea, Mueller Christopher G, Volchkov Viktor E
Mannoside Glycolipid Conjugates Display Antiviral Activity Against Ebola Virus Article de journal
Dans: The Journal of Infectious Diseases, vol. 218, no. suppl_5, p. S666–S671, 2018, ISSN: 1537-6613.
Résumé | Liens | BibTeX | Étiquettes: Animals, Antiviral Agents, Chlorocebus aethiops, Ebolavirus, Glycolipids, Humans, Mannosides, Team-Mueller, Vero Cells, Virus Internalization
@article{reynard_mannoside_2018,
title = {Mannoside Glycolipid Conjugates Display Antiviral Activity Against Ebola Virus},
author = {Olivier Reynard and Evelyne Schaeffer and Valentina A Volchkova and Andrea Cimarelli and Christopher G Mueller and Viktor E Volchkov},
doi = {10.1093/infdis/jiy464},
issn = {1537-6613},
year = {2018},
date = {2018-11-01},
journal = {The Journal of Infectious Diseases},
volume = {218},
number = {suppl_5},
pages = {S666--S671},
abstract = {The West African outbreak of Ebola virus (EBOV) infection during 2013-2016 highlighted the need for development of field-applicable therapeutic drugs for this infection. Here we report that mannoside glycolipid conjugates (MGCs) consisting of a trimannose head and a lipophilic chain assembled by a linker inhibit EBOV infection not only of human monocyte-derived dendritic cells and macrophages, but also of a number of susceptible cells. Analysis of the mode of action leads us to conclude that MGCs act directly on cells, notably by preventing virus endocytosis.},
keywords = {Animals, Antiviral Agents, Chlorocebus aethiops, Ebolavirus, Glycolipids, Humans, Mannosides, Team-Mueller, Vero Cells, Virus Internalization},
pubstate = {published},
tppubtype = {article}
}
Schaeffer Evelyne, Flacher Vincent, Neuberg Patrick, Hoste Astrid, Brulefert Adrien, Fauny Jean-Daniel, Wagner Alain, Mueller Christopher G
Inhibition of dengue virus infection by mannoside glycolipid conjugates Article de journal
Dans: Antiviral Research, vol. 154, p. 116–123, 2018, ISSN: 1872-9096.
Résumé | Liens | BibTeX | Étiquettes: Animals, Antiviral Agents, Cell Line, Cell Membrane, Chemistry, Chlorocebus aethiops, Dendritic Cells, Dengue, Dengue virus, development, Drug, Drug Discovery, Flavivirus, function, Fusion, Glycolipids, Health, Hep G2 Cells, Human, Humans, immunopathology, infection, inhibition, inhibitors, Inhibitory Concentration 50, lipid, Macrophages, Mannosides, Membrane, Serogroup, Skin, Team-Mueller, vaccine, Vaccines, Vero Cells, viral Infection, virus, Virus Replication
@article{schaeffer_inhibition_2018b,
title = {Inhibition of dengue virus infection by mannoside glycolipid conjugates},
author = {Evelyne Schaeffer and Vincent Flacher and Patrick Neuberg and Astrid Hoste and Adrien Brulefert and Jean-Daniel Fauny and Alain Wagner and Christopher G Mueller},
doi = {10.1016/j.antiviral.2018.04.005},
issn = {1872-9096},
year = {2018},
date = {2018-01-01},
journal = {Antiviral Research},
volume = {154},
pages = {116--123},
abstract = {Dengue virus (DENV), a mosquito-borne flavivirus, causes severe and potentially fatal symptoms in millions of infected individuals each year. Although dengue fever represents a major global public health problem, the vaccines or antiviral drugs proposed so far have not shown sufficient efficacy and safety, calling for new antiviral developments. Here we have shown that a mannoside glycolipid conjugate (MGC) bearing a trimannose head with a saturated lipid chain inhibited DENV productive infection. It showed remarkable cell promiscuity, being active in human skin dendritic cells, hepatoma cell lines and Vero cells, and was active against all four DENV serotypes, with an IC50 in the low micromolar range. Time-of-addition experiments and structure-activity analyses revealed the importance of the lipid chain to interfere with an early viral infection step. This, together with a correlation between antiviral activity and membrane polarization by the lipid moiety indicated that the inhibitor functions by blocking viral envelope fusion with the endosome membrane. These finding establish MGCs as a novel class of antivirals against the DENV.},
keywords = {Animals, Antiviral Agents, Cell Line, Cell Membrane, Chemistry, Chlorocebus aethiops, Dendritic Cells, Dengue, Dengue virus, development, Drug, Drug Discovery, Flavivirus, function, Fusion, Glycolipids, Health, Hep G2 Cells, Human, Humans, immunopathology, infection, inhibition, inhibitors, Inhibitory Concentration 50, lipid, Macrophages, Mannosides, Membrane, Serogroup, Skin, Team-Mueller, vaccine, Vaccines, Vero Cells, viral Infection, virus, Virus Replication},
pubstate = {published},
tppubtype = {article}
}
Flacher Vincent, Neuberg Patrick, Point Floriane, Daubeuf François, Muller Quentin, Sigwalt David, Fauny Jean-Daniel, Remy Jean-Serge, Frossard Nelly, Wagner Alain, Mueller Christopher G, Schaeffer Evelyne
Mannoside Glycolipid Conjugates Display Anti-inflammatory Activity by Inhibition of Toll-like Receptor-4 Mediated Cell Activation Article de journal
Dans: ACS chemical biology, vol. 10, no. 12, p. 2697–2705, 2015, ISSN: 1554-8937.
Résumé | Liens | BibTeX | Étiquettes: Activation, Animals, Anti-Inflammatory Agents, Carbohydrate Sequence, CD14, Cell Membrane, Cells, Chemistry, Cultured, cytokine, Dendritic Cells, development, disease, Glycolipids, Human, Humans, immunopathology, Inbred BALB C, inflammation, inhibition, lipid, lipopolysaccharide, Lipopolysaccharides, LPS, LUNG, Mannosides, Maturation, Membrane, Mice, monocyte, Monocytes, mouse, neutrophils, NF-kappaB, Pneumonia, Protein-Serine-Threonine Kinases, Receptor, secretion, signaling, Structure-Activity Relationship, Tail, Team-Mueller, TLR4, Toll-Like Receptor 4
@article{flacher_mannoside_2015b,
title = {Mannoside Glycolipid Conjugates Display Anti-inflammatory Activity by Inhibition of Toll-like Receptor-4 Mediated Cell Activation},
author = {Vincent Flacher and Patrick Neuberg and Floriane Point and François Daubeuf and Quentin Muller and David Sigwalt and Jean-Daniel Fauny and Jean-Serge Remy and Nelly Frossard and Alain Wagner and Christopher G Mueller and Evelyne Schaeffer},
doi = {10.1021/acschembio.5b00552},
issn = {1554-8937},
year = {2015},
date = {2015-12-01},
journal = {ACS chemical biology},
volume = {10},
number = {12},
pages = {2697--2705},
abstract = {Inhibition of excessive Toll-like receptor 4 (TLR4) signaling is a therapeutic approach pursued for many inflammatory diseases. We report that Mannoside Glycolipid Conjugates (MGCs) selectively blocked TLR4-mediated activation of human monocytes and monocyte-derived dendritic cells (DCs) by lipopolysaccharide (LPS). They potently suppressed pro-inflammatory cytokine secretion and maturation of DCs exposed to LPS, leading to impaired T cell stimulation. MGCs did not interfere with LPS and could act in a delayed manner, hours after LPS stimulation. Their inhibitory action required both the sugar heads and the lipid chain, although the nature of the sugar and the structure of the lipid tail could be modified. They blocked early signaling events at the cell membrane, enhanced internalization of CD14 receptors, and prevented colocalization of CD14 and TLR4, thereby abolishing NF-κB nuclear translocation. When the best lead conjugate was tested in a mouse model of LPS-induced acute lung inflammation, it displayed an anti-inflammatory action by suppressing the recruitment of neutrophils. Thus, MGCs could serve as promising leads for the development of selective TLR4 antagonistic agents for inflammatory diseases.},
keywords = {Activation, Animals, Anti-Inflammatory Agents, Carbohydrate Sequence, CD14, Cell Membrane, Cells, Chemistry, Cultured, cytokine, Dendritic Cells, development, disease, Glycolipids, Human, Humans, immunopathology, Inbred BALB C, inflammation, inhibition, lipid, lipopolysaccharide, Lipopolysaccharides, LPS, LUNG, Mannosides, Maturation, Membrane, Mice, monocyte, Monocytes, mouse, neutrophils, NF-kappaB, Pneumonia, Protein-Serine-Threonine Kinases, Receptor, secretion, signaling, Structure-Activity Relationship, Tail, Team-Mueller, TLR4, Toll-Like Receptor 4},
pubstate = {published},
tppubtype = {article}
}
Schaeffer Evelyne, Dehuyser Laure, Sigwalt David, Flacher Vincent, Bernacchi Serena, Chaloin Olivier, Remy Jean-Serge, Mueller Christopher G, Baati Rachid, Wagner Alain
Dynamic micelles of mannoside glycolipids are more efficient than polymers for inhibiting HIV-1 trans-infection Article de journal
Dans: Bioconjugate Chemistry, vol. 24, no. 11, p. 1813–1823, 2013, ISSN: 1520-4812.
Résumé | Liens | BibTeX | Étiquettes: Anti-HIV Agents, Calcium, Cells, Chemistry, Cultured, Dendritic Cells, Dose-Response Relationship, Drug, Electron, fluorescence, Glycolipids, HIV, HIV Infections, HIV-1, Human, Humans, immunodeficiency, immunopathology, inhibition, LECTIN, Lectins, lipid, Mannosides, Micelles, Microbial Sensitivity Tests, Microscopy, Models, Molecular, Molecular Structure, Polymers, prophylaxis, Spectrometry, Structure-Activity Relationship, Surface Plasmon Resonance, target, Team-Mueller, Thermodynamics, Transmission, virus
@article{schaeffer_dynamic_2013,
title = {Dynamic micelles of mannoside glycolipids are more efficient than polymers for inhibiting HIV-1 trans-infection},
author = {Evelyne Schaeffer and Laure Dehuyser and David Sigwalt and Vincent Flacher and Serena Bernacchi and Olivier Chaloin and Jean-Serge Remy and Christopher G Mueller and Rachid Baati and Alain Wagner},
doi = {10.1021/bc4000806},
issn = {1520-4812},
year = {2013},
date = {2013-11-01},
journal = {Bioconjugate Chemistry},
volume = {24},
number = {11},
pages = {1813--1823},
abstract = {Mannoside glycolipid conjugates are able to inhibit human immunodeficiency virus type 1 (HIV-1) trans-infection mediated by human dendritic cells (DCs). The conjugates are formed by three building blocks: a linear or branched mannose head, a hydrophilic linker, and a 24-carbon lipid chain. We have shown that, even as single molecules, these compounds efficiently target mannose-binding lectins, such as DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN) important for HIV-1 transmission. With the goal to optimize their inhibitory activity by supramolecular structure formation, we have compared saturated and unsaturated conjugates, as single molecules, self-assemblies of dynamic micelles, and photopolymerized cross-linked polymers. Surface plasmon resonance showed that, unexpectedly, polymers of trivalent conjugates did not display a higher binding affinity for DC-SIGN than single molecules. Interactions on a chip or in solution were independent of calcium; however, binding to DCs was inhibited by a calcium chelator. Moreover, HIV-1 trans-infection was mostly inhibited by dynamic micelles and not by rigid polymers. The inhibition data revealed a clear correlation between the structure and molecular assembly of a conjugate and its biological antiviral activity. We present an interaction model between DC-SIGN and conjugates-either single molecules, micelles, or polymers-that highlights that the most effective interactions by dynamic micelles involve both mannose heads and lipid chains. Our data reveal that trivalent glycolipid conjugates display the highest microbicide potential for HIV prophylaxis, as dynamic micelles conjugates and not as rigid polymers.},
keywords = {Anti-HIV Agents, Calcium, Cells, Chemistry, Cultured, Dendritic Cells, Dose-Response Relationship, Drug, Electron, fluorescence, Glycolipids, HIV, HIV Infections, HIV-1, Human, Humans, immunodeficiency, immunopathology, inhibition, LECTIN, Lectins, lipid, Mannosides, Micelles, Microbial Sensitivity Tests, Microscopy, Models, Molecular, Molecular Structure, Polymers, prophylaxis, Spectrometry, Structure-Activity Relationship, Surface Plasmon Resonance, target, Team-Mueller, Thermodynamics, Transmission, virus},
pubstate = {published},
tppubtype = {article}
}
Thomann Jean-Sébastien, Monneaux Fanny, Creusat Gaëlle, Spanedda Maria Vittoria, Heurtault Béatrice, Habermacher Chloé, Schuber Francis, Bourel-Bonnet Line, Frisch Benoît
Novel glycolipid TLR2 ligands of the type Pam2Cys-α-Gal: synthesis and biological properties Article de journal
Dans: European Journal of Medicinal Chemistry, vol. 51, p. 174–183, 2012, ISSN: 1768-3254.
Résumé | Liens | BibTeX | Étiquettes: Adjuvants, Animals, Cell Line, Chemistry Techniques, Female, Galactose, Glycolipids, Humans, I2CT, Immunologic, ligands, Mice, Monneaux, Structure-Activity Relationship, Synthetic, Team-Dumortier, Toll-Like Receptor 2
@article{thomann_novel_2012,
title = {Novel glycolipid TLR2 ligands of the type Pam2Cys-α-Gal: synthesis and biological properties},
author = {Jean-Sébastien Thomann and Fanny Monneaux and Gaëlle Creusat and Maria Vittoria Spanedda and Béatrice Heurtault and Chloé Habermacher and Francis Schuber and Line Bourel-Bonnet and Benoît Frisch},
doi = {10.1016/j.ejmech.2012.02.039},
issn = {1768-3254},
year = {2012},
date = {2012-05-01},
journal = {European Journal of Medicinal Chemistry},
volume = {51},
pages = {174--183},
abstract = {A more complete understanding of the mechanism of action of TLR agonists has fueled the investigation of new synthetic immunoadjuvants. In this context, we designed and synthesized glycolipids of the type Pam(2)Cys-α-Galactose as novel immunoadjuvants. Their synthesis required modifying a hydrophobic tBoc-[2,3-bispalmitoyloxy-(2R)-propyl]-R-cysteinyl moiety, i.e. the minimal structure required for TLR2 agonist activity, by addition of a hydrophilic head, either an α-Galactosylpyranose or an α-Galactosylfuranose to gain respectively Pam(2)CGalp and Pam(2)CGalf. While preparing a carbohydrate building block, an unexpected stereoselectivity was observed during a halide ion-catalytic process on a protected galactofuranose: the alpha anomer was obtained with surprisingly high selectivity (α/β ratiotextgreater9) and with good isolated yield (51%). The TLR2 binding properties of Pam(2)CGalp and Pam(2)CGalf were then fully evaluated. Their efficiency in triggering the proliferation of BALB/c mouse splenocytes was also compared to that of Pam(2)CAG and Pam(3)CAG, two well-established ligands of TLRs. Moreover, the maturation state of murine dendritic cells previously incubated with either Pam(2)CGalp or Pam(2)CGalf was monitored by flow cytometry and compared to that induced by lipopolysaccharide. Pam(2)CGalp and Pam(2)CGalf were found to be equivalent TLR2 agonists, and induced splenocyte proliferation and DC maturation. With very similar activity, Pam(2)CGalp and Pam(2)CGalf were also 10-fold to 100-fold better than Pam(2)CAG and Pam(3)CAG at inducing B cell proliferation. This represents the first time a glucidic head has been added to the tBoc-[2,3-bispalmitoyloxy-(2R)-propyl]-R-cysteinyl moiety whilst maintaining the immunomodulating activity. This should greatly enrich the data available on Pam(2)C structure/activity relationships.},
keywords = {Adjuvants, Animals, Cell Line, Chemistry Techniques, Female, Galactose, Glycolipids, Humans, I2CT, Immunologic, ligands, Mice, Monneaux, Structure-Activity Relationship, Synthetic, Team-Dumortier, Toll-Like Receptor 2},
pubstate = {published},
tppubtype = {article}
}
Banchet-Cadeddu Aline, Martinez Agathe, Guillarme Stéphane, Parietti Véronique, Monneaux Fanny, Hénon Eric, Renault Jean-Hugues, Nuzillard Jean-Marc, Haudrechy Arnaud
Use of the NEO strategy (Nucleophilic addition/Epoxide Opening) for the synthesis of a new C-galactoside ester analogue of KRN 7000 Article de journal
Dans: Bioorganic & Medicinal Chemistry Letters, vol. 21, no. 8, p. 2510–2514, 2011, ISSN: 1464-3405.
Résumé | Liens | BibTeX | Étiquettes: Animals, Cell Proliferation, Cells, Cultured, Esters, Galactosides, Galactosylceramides, Glycolipids, I2CT, Interferon-gamma, Interleukin-4, Mice, Monneaux, Team-Dumortier
@article{banchet-cadeddu_use_2011,
title = {Use of the NEO strategy (Nucleophilic addition/Epoxide Opening) for the synthesis of a new C-galactoside ester analogue of KRN 7000},
author = {Aline Banchet-Cadeddu and Agathe Martinez and Stéphane Guillarme and Véronique Parietti and Fanny Monneaux and Eric Hénon and Jean-Hugues Renault and Jean-Marc Nuzillard and Arnaud Haudrechy},
doi = {10.1016/j.bmcl.2011.02.044},
issn = {1464-3405},
year = {2011},
date = {2011-04-01},
journal = {Bioorganic & Medicinal Chemistry Letters},
volume = {21},
number = {8},
pages = {2510--2514},
abstract = {Our goal in the search for potentially bioactive analogues of KRN 7000 was to design an easy synthetic approach to a library of analogues using a strategy recently developed in our laboratory based on a Nucleophilic addition followed by an Epoxide Opening (the NEO strategy). Through the use of a common pivotal structure, a new C-galactoside ester analogue (23) was synthesized which showed an encouraging T(H)2 biased response during preliminary biological tests.},
keywords = {Animals, Cell Proliferation, Cells, Cultured, Esters, Galactosides, Galactosylceramides, Glycolipids, I2CT, Interferon-gamma, Interleukin-4, Mice, Monneaux, Team-Dumortier},
pubstate = {published},
tppubtype = {article}
}