Injarabian L, Skerniskyte J, Gianetto Q G, Witko-Sarsat V, Marteyn B S
Reducing neutrophil exposure to oxygen allows their basal state maintenance Article de journal
Dans: Immunol Cell Biol, vol. 99, non 7, p. 782-789, 2021, ISBN: 33811670, (1440-1711 (Electronic) 0818-9641 (Linking) Journal Article).
Résumé | Liens | BibTeX | Étiquettes: Activation, anoxia, hyperoxia, MARTEYN, neutrophils, Unité ARN, viability
@article{Injarabian2021,
title = {Reducing neutrophil exposure to oxygen allows their basal state maintenance},
author = {L Injarabian and J Skerniskyte and Q G Gianetto and V Witko-Sarsat and B S Marteyn},
url = {http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=33811670},
doi = {10.1111/imcb.12458},
isbn = {33811670},
year = {2021},
date = {2021-01-01},
urldate = {2021-01-01},
journal = {Immunol Cell Biol},
volume = {99},
number = {7},
pages = {782-789},
abstract = {Neutrophils are the most abundant circulating white blood cells and are the central players of the innate immune response. During their lifecycle, neutrophils mainly evolve under low oxygen conditions (0.1-4% O2), to which they are well adapted. Neutrophils are atypical cells since they are highly glycolytic, and susceptible to oxygen exposure, which induces their activation and death, through mechanisms, which remain currently elusive. Nevertheless, nearly all studies conducted on neutrophils are carried out under atmospheric oxygen (21%), corresponding to hyperoxia. Here, we investigated the impact of hyperoxia during neutrophil purification and culture on neutrophil viability, activation and cytosolic protein content. We demonstrate that neutrophil hyper-activation (CD62L shedding) is induced during culture under hyperoxic conditions (24 h), compared to neutrophils cultured under anoxic conditions. Spontaneous neutrophil extracellular trap (NET) formation is observed when neutrophils face hyperoxia during purification or culture. In addition, we show that maintaining neutrophils in autologous plasma is the preferred strategy to maintain their basal state. Our results show that manipulating neutrophils under hyperoxic conditions leads to the loss of 57 cytosolic proteins during purification, while it does not lead to an immediate impact on neutrophil activation (CD11b(high), CD54(high), CD62L(neg)) or viability (DAPI(+)). We identified two clusters of proteins belonging to the cholesterol metabolism and to the complement and coagulation cascade pathways, which are highly susceptible to neutrophil oxygen exposure during neutrophil purification. In conclusion, protecting neutrophil from oxygen during their purification and culture is recommended to avoid activation and prevent the alteration cytosolic protein composition.},
note = {1440-1711 (Electronic)
0818-9641 (Linking)
Journal Article},
keywords = {Activation, anoxia, hyperoxia, MARTEYN, neutrophils, Unité ARN, viability},
pubstate = {published},
tppubtype = {article}
}
Schaeffer Evelyne, Sánchez-Fernández Elena M, Gonçalves-Pereira Rita, Flacher Vincent, Lamon Delphine, Duval Monique, Fauny Jean-Daniel, Fernández José M García, Mueller Christopher G, Mellet Carmen Ortiz
sp2-Iminosugar glycolipids as inhibitors of lipopolysaccharide-mediated human dendritic cell activation in vitro and of acute inflammation in mice in vivo Article de journal
Dans: European Journal of Medicinal Chemistry, vol. 169, p. 111–120, 2019, ISSN: 1768-3254.
Résumé | Liens | BibTeX | Étiquettes: Activation, Acute Disease, Animals, antagonists & inhibitors, CD14, Cells, chemical synthesis, Chemistry, CO-RECEPTOR, Cultured, Dendritic cell, Dendritic Cells, Dose-Response Relationship, Drug, drug effects, drug therapy, Glycolipid, Glycolipids, Human, Humans, Iminosugar, immunopathology, IN VITRO, In vivo, Inbred C57BL, inflammation, Interleukin-6, lipopolysaccharide, Lipopolysaccharides, LPS, Male, Maturation, metabolism, Mice, MICROGLIA, Molecular Structure, mouse, pathology, Pharmacology, PRODUCTION, Receptor, signaling, Structure-Activity Relationship, Sulfone, Sulfoxide, Tail, target, Team-Mueller
@article{schaeffer_sp2-iminosugar_2019,
title = {sp2-Iminosugar glycolipids as inhibitors of lipopolysaccharide-mediated human dendritic cell activation in vitro and of acute inflammation in mice in vivo},
author = {Evelyne Schaeffer and Elena M Sánchez-Fernández and Rita Gonçalves-Pereira and Vincent Flacher and Delphine Lamon and Monique Duval and Jean-Daniel Fauny and José M García Fernández and Christopher G Mueller and Carmen Ortiz Mellet},
doi = {10.1016/j.ejmech.2019.02.078},
issn = {1768-3254},
year = {2019},
date = {2019-05-01},
journal = {European Journal of Medicinal Chemistry},
volume = {169},
pages = {111--120},
abstract = {Glycolipid mimetics consisting of a bicyclic polyhydroxypiperidine-cyclic carbamate core and a pseudoanomeric hydrophobic tail, termed sp2-iminosugar glycolipids (sp2-IGLs), target microglia during neuroinflammatory processes. Here we have synthesized and investigated new variants of sp2-IGLs for their ability to suppress the activation of human monocyte-derived dendritic cells (DCs) by lipopolysaccharide (LPS) signaling through Toll-like receptor 4. We report that the best lead was (1R)-1-dodecylsulfonyl-5N,6O-oxomethylidenenojirimycin (DSO2-ONJ), able to inhibit LPS-induced TNFα production and maturation of DCs. Immunovisualization experiments, using a mannoside glycolipid conjugate (MGC) that also suppress LPS-mediated DC activation as control, evidenced a distinct mode of action for the sp2-IGLs: unlike MGCs, DSO2-ONJ did not elicit internalization of the LPS co-receptor CD14 or induce its co-localization with the Toll-like receptor 4. In a mouse model of LPS-induced acute inflammation, DSO2-ONJ demonstrated anti-inflammatory activity by inhibiting the production of the pro-inflammatory interleukin-6. The ensemble of the data highlights sp2-IGLs as a promising new class of molecules against inflammation by interfering in Toll-like receptor intracellular signaling.},
keywords = {Activation, Acute Disease, Animals, antagonists & inhibitors, CD14, Cells, chemical synthesis, Chemistry, CO-RECEPTOR, Cultured, Dendritic cell, Dendritic Cells, Dose-Response Relationship, Drug, drug effects, drug therapy, Glycolipid, Glycolipids, Human, Humans, Iminosugar, immunopathology, IN VITRO, In vivo, Inbred C57BL, inflammation, Interleukin-6, lipopolysaccharide, Lipopolysaccharides, LPS, Male, Maturation, metabolism, Mice, MICROGLIA, Molecular Structure, mouse, pathology, Pharmacology, PRODUCTION, Receptor, signaling, Structure-Activity Relationship, Sulfone, Sulfoxide, Tail, target, Team-Mueller},
pubstate = {published},
tppubtype = {article}
}
Camara Abdouramane, Cordeiro Olga G, Alloush Farouk, Sponsel Janina, Chypre Mélanie, Onder Lucas, Asano Kenichi, Tanaka Masato, Yagita Hideo, Ludewig Burkhard, Flacher Vincent, Mueller Christopher G
Lymph Node Mesenchymal and Endothelial Stromal Cells Cooperate via the RANK-RANKL Cytokine Axis to Shape the Sinusoidal Macrophage Niche Article de journal
Dans: Immunity, vol. 50, non 6, p. 1467–1481.e6, 2019, ISSN: 1097-4180.
Résumé | Liens | BibTeX | Étiquettes: Activation, Animals, Biomarkers, Cell Differentiation, Cells, Cellular, Cellular Microenvironment, cytokine, Cytokines, deficiency, Differentiation, Endothelial Cells, ENDOTHELIAL-CELLS, environment, Expression, immune regulation, Immunology, Immunophenotyping, inflammation, LYMPH, LYMPH NODE, Lymph Nodes, lymphatic endothelial cells, Lymphoid Tissue, Macrophage, Macrophages, Mesenchymal Stem Cells, mesenchymal stromal cells, Mice, rank, RANK ligand, Receptor Activator of Nuclear Factor-kappa B, Regulation, Signal Transduction, Stromal Cells, Team-Mueller, transgenic
@article{camara_lymph_2019,
title = {Lymph Node Mesenchymal and Endothelial Stromal Cells Cooperate via the RANK-RANKL Cytokine Axis to Shape the Sinusoidal Macrophage Niche},
author = {Abdouramane Camara and Olga G Cordeiro and Farouk Alloush and Janina Sponsel and Mélanie Chypre and Lucas Onder and Kenichi Asano and Masato Tanaka and Hideo Yagita and Burkhard Ludewig and Vincent Flacher and Christopher G Mueller},
doi = {10.1016/j.immuni.2019.05.008},
issn = {1097-4180},
year = {2019},
date = {2019-01-01},
journal = {Immunity},
volume = {50},
number = {6},
pages = {1467--1481.e6},
abstract = {Tissue-resident macrophages are receptive to specific signals concentrated in cellular niches that direct their cell differentiation and maintenance genetic programs. Here, we found that deficiency of the cytokine RANKL in lymphoid tissue organizers and marginal reticular stromal cells of lymph nodes resulted in the loss of the CD169+ sinusoidal macrophages (SMs) comprising the subcapsular and the medullary subtypes. Subcapsular SM differentiation was impaired in mice with targeted RANK deficiency in SMs. Temporally controlled RANK removal in lymphatic endothelial cells (LECs) revealed that lymphatic RANK activation during embryogenesis and shortly after birth was required for the differentiation of both SM subtypes. Moreover, RANK expression by LECs was necessary for SM restoration after inflammation-induced cell loss. Thus, cooperation between mesenchymal cells and LECs shapes a niche environment that supports SM differentiation and reconstitution after inflammation.},
keywords = {Activation, Animals, Biomarkers, Cell Differentiation, Cells, Cellular, Cellular Microenvironment, cytokine, Cytokines, deficiency, Differentiation, Endothelial Cells, ENDOTHELIAL-CELLS, environment, Expression, immune regulation, Immunology, Immunophenotyping, inflammation, LYMPH, LYMPH NODE, Lymph Nodes, lymphatic endothelial cells, Lymphoid Tissue, Macrophage, Macrophages, Mesenchymal Stem Cells, mesenchymal stromal cells, Mice, rank, RANK ligand, Receptor Activator of Nuclear Factor-kappa B, Regulation, Signal Transduction, Stromal Cells, Team-Mueller, transgenic},
pubstate = {published},
tppubtype = {article}
}
Nehmar Ramzi, Alsaleh Ghada, Voisin Benjamin, Flacher Vincent, Mariotte Alexandre, Saferding Victoria, Puchner Antonia, Niederreiter Birgit, Vandamme Thierry, Schabbauer Gernot, Kastner Philippe, Chan Susan, Kirstetter Peggy, Holcmann Martin, Mueller Christopher, Sibilia Jean, Bahram Seiamak, Blüml Stephan, Georgel Philippe
Therapeutic Modulation of Plasmacytoid Dendritic Cells in Experimental Arthritis Article de journal
Dans: Arthritis & Rheumatology (Hoboken, N.J.), vol. 69, non 11, p. 2124–2135, 2017, ISSN: 2326-5205.
Résumé | Liens | BibTeX | Étiquettes: Activation, Adjuvants, Aminoquinolines, Analysis, Animal, Animals, arthritis, Assay, cancer, Cells, cytokine, Cytokines, Dendritic Cells, DEPLETION, Disease Models, drug effects, Enzyme-Linked Immunosorbent Assay, Experimental, Flow Cytometry, Gene Expression Profiling, Genetics, GLYCOPROTEIN, Glycoproteins, Human, Humans, IFN, IKAROS, Ikaros Transcription Factor, imiquimod, Immunologic, Immunology, immunopathology, inflammation, interferon, Interferon Type I, interferons, Knockout, Membrane, Membrane Glycoproteins, METHOD, methods, Mice, MODULATION, mouse, Necrosis, NECROSIS-FACTOR-ALPHA, pathogenesis, Patients, Pharmacology, physiology, plasmacytoid dendritic cells, Protein, Receptor, Reverse Transcriptase Polymerase Chain Reaction, rheumatoid, rheumatoid arthritis, Serum, signaling, Team-Mueller, TLR7, Toll-Like Receptor 7, TOPICAL APPLICATION, Transcription, TRANSCRIPTION FACTOR, transcriptome, transgenic, tumor, Tumor Necrosis Factor, Tumor Necrosis Factor-alpha
@article{nehmar_therapeutic_2017,
title = {Therapeutic Modulation of Plasmacytoid Dendritic Cells in Experimental Arthritis},
author = {Ramzi Nehmar and Ghada Alsaleh and Benjamin Voisin and Vincent Flacher and Alexandre Mariotte and Victoria Saferding and Antonia Puchner and Birgit Niederreiter and Thierry Vandamme and Gernot Schabbauer and Philippe Kastner and Susan Chan and Peggy Kirstetter and Martin Holcmann and Christopher Mueller and Jean Sibilia and Seiamak Bahram and Stephan Blüml and Philippe Georgel},
doi = {10.1002/art.40225},
issn = {2326-5205},
year = {2017},
date = {2017-01-01},
journal = {Arthritis & Rheumatology (Hoboken, N.J.)},
volume = {69},
number = {11},
pages = {2124--2135},
abstract = {OBJECTIVE: The role of plasmacytoid dendritic cells (PDCs) and type I interferons (IFNs) in rheumatoid arthritis (RA) remains a subject of controversy. This study was undertaken to explore the contribution of PDCs and type I IFNs to RA pathogenesis using various animal models of PDC depletion and to monitor the effect of localized PDC recruitment and activation on joint inflammation and bone damage.
METHODS: Mice with K/BxN serum-induced arthritis, collagen-induced arthritis, and human tumor necrosis factor transgene insertion were studied. Symptoms were evaluated by visual scoring, quantification of paw swelling, determination of cytokine levels by enzyme-linked immunosorbent assay, and histologic analysis. Imiquimod-dependent therapeutic effects were monitored by transcriptome analysis (using quantitative reverse transcriptase-polymerase chain reaction) and flow cytometric analysis of the periarticular tissue.
RESULTS: PDC-deficient mice showed exacerbation of inflammatory and arthritis symptoms after arthritogenic serum transfer. In contrast, enhancing PDC recruitment and activation to arthritic joints by topical application of the Toll-like receptor 7 (TLR-7) agonist imiquimod significantly ameliorated arthritis in various mouse models. Imiquimod induced an IFN signature and led to reduced infiltration of inflammatory cells.
CONCLUSION: The therapeutic effects of imiquimod on joint inflammation and bone destruction are dependent on TLR-7 sensing by PDCs and type I IFN signaling. Our findings indicate that local recruitment and activation of PDCs represents an attractive therapeutic opportunity for RA patients.},
keywords = {Activation, Adjuvants, Aminoquinolines, Analysis, Animal, Animals, arthritis, Assay, cancer, Cells, cytokine, Cytokines, Dendritic Cells, DEPLETION, Disease Models, drug effects, Enzyme-Linked Immunosorbent Assay, Experimental, Flow Cytometry, Gene Expression Profiling, Genetics, GLYCOPROTEIN, Glycoproteins, Human, Humans, IFN, IKAROS, Ikaros Transcription Factor, imiquimod, Immunologic, Immunology, immunopathology, inflammation, interferon, Interferon Type I, interferons, Knockout, Membrane, Membrane Glycoproteins, METHOD, methods, Mice, MODULATION, mouse, Necrosis, NECROSIS-FACTOR-ALPHA, pathogenesis, Patients, Pharmacology, physiology, plasmacytoid dendritic cells, Protein, Receptor, Reverse Transcriptase Polymerase Chain Reaction, rheumatoid, rheumatoid arthritis, Serum, signaling, Team-Mueller, TLR7, Toll-Like Receptor 7, TOPICAL APPLICATION, Transcription, TRANSCRIPTION FACTOR, transcriptome, transgenic, tumor, Tumor Necrosis Factor, Tumor Necrosis Factor-alpha},
pubstate = {published},
tppubtype = {article}
}
Chypre M, Seaman J, Cordeiro O G, Willen L, Knoop K A, Buchanan A, Sainson R C, Williams I R, Yagita H, Schneider P, Mueller C G
Characterization and application of two RANK-specific antibodies with different biological activities Article de journal
Dans: Immunol.Lett., vol. 171, non 1879-0542 (Electronic), p. 5–14, 2016.
Résumé | Liens | BibTeX | Étiquettes: Activation, Animals, ANTAGONIST, Antibodies, antibody, Antibody Affinity, Apoptosis, Assay, Cell Differentiation, Cell Surface Display Techniques, Cellular, Chemistry, comparison, Dendritic Cells, DERMAL DENDRITIC CELLS, Epithelial Cells, Epithelial microfold cell, Epitopes, Fusion, FUSION PROTEIN, HEK293 Cells, Homeostasis, Human, Humans, immune regulation, Immunization, Immunology, Immunomodulation, immunopathology, In vivo, Inbred C57BL, Intestines, Jurkat Cells, Langerhans cell, Langerhans Cells, Mice, Monoclonal, monoclonal antibody, MONOCLONAL-ANTIBODY, mouse, NF-kappa B, NF-kappaB, pathology, Protein, rank, RANK (TNFRSF11a), Receptor, Receptor Activator of Nuclear Factor-kappa B, Regulation, Secondary, Signal Transduction, signaling, Team-Mueller, therapy
@article{chypre_characterization_2016,
title = {Characterization and application of two RANK-specific antibodies with different biological activities},
author = {M Chypre and J Seaman and O G Cordeiro and L Willen and K A Knoop and A Buchanan and R C Sainson and I R Williams and H Yagita and P Schneider and C G Mueller},
doi = {10.1016/j.imlet.2016.01.003},
year = {2016},
date = {2016-03-01},
journal = {Immunol.Lett.},
volume = {171},
number = {1879-0542 (Electronic)},
pages = {5--14},
abstract = {Antibodies play an important role in therapy and investigative biomedical research. The TNF-family member Receptor Activator of NF-kappaB (RANK) is known for its role in bone homeostasis and is increasingly recognized as a central player in immune regulation and epithelial cell activation. However, the study of RANK biology has been hampered by missing or insufficient characterization of high affinity tools that recognize RANK. Here, we present a careful description and comparison of two antibodies, RANK-02 obtained by phage display (Newa, 2014 [1]) and R12-31 generated by immunization (Kamijo, 2006 [2]). We found that both antibodies recognized mouse RANK with high affinity, while RANK-02 and R12-31 recognized human RANK with high and lower affinities, respectively. Using a cell apoptosis assay based on stimulation of a RANK:Fas fusion protein, and a cellular NF-kappaB signaling assay, we showed that R12-31 was agonist for both species. R12-31 interfered little or not at all with the binding of RANKL to RANK, in contrast to RANK-02 that efficiently prevented this interaction. Depending on the assay and species, RANK-02 was either a weak agonist or a partial antagonist of RANK. Both antibodies recognized human Langerhans cells, previously shown to express RANK, while dermal dendritic cells were poorly labeled. In vivo R12-31 agonist activity was demonstrated by its ability to induce the formation of intestinal villous microfold cells in mice. This characterization of two monoclonal antibodies should now allow better evaluation of their application as therapeutic reagents and investigative tools},
keywords = {Activation, Animals, ANTAGONIST, Antibodies, antibody, Antibody Affinity, Apoptosis, Assay, Cell Differentiation, Cell Surface Display Techniques, Cellular, Chemistry, comparison, Dendritic Cells, DERMAL DENDRITIC CELLS, Epithelial Cells, Epithelial microfold cell, Epitopes, Fusion, FUSION PROTEIN, HEK293 Cells, Homeostasis, Human, Humans, immune regulation, Immunization, Immunology, Immunomodulation, immunopathology, In vivo, Inbred C57BL, Intestines, Jurkat Cells, Langerhans cell, Langerhans Cells, Mice, Monoclonal, monoclonal antibody, MONOCLONAL-ANTIBODY, mouse, NF-kappa B, NF-kappaB, pathology, Protein, rank, RANK (TNFRSF11a), Receptor, Receptor Activator of Nuclear Factor-kappa B, Regulation, Secondary, Signal Transduction, signaling, Team-Mueller, therapy},
pubstate = {published},
tppubtype = {article}
}
Cordeiro Olga G, Chypre Mélanie, Brouard Nathalie, Rauber Simon, Alloush Farouk, Romera-Hernandez Monica, Bénézech Cécile, Li Zhi, Eckly Anita, Coles Mark C, Rot Antal, Yagita Hideo, Léon Catherine, Ludewig Burkhard, Cupedo Tom, Lanza François, Mueller Christopher G
Integrin-Alpha IIb Identifies Murine Lymph Node Lymphatic Endothelial Cells Responsive to RANKL Article de journal
Dans: PloS One, vol. 11, non 3, p. e0151848, 2016, ISSN: 1932-6203.
Résumé | Liens | BibTeX | Étiquettes: Activation, Animals, Cells, Cultured, Endothelial Cells, ENDOTHELIAL-CELLS, Expression, Fibronectins, Immunization, Immunology, immunopathology, Inbred C57BL, infection, ligand, LYMPH, LYMPH NODE, Lymph Nodes, lymphoid organs, Lymphotoxin, Lymphotoxin-beta, Mice, murine, NF-kappaB, Platelet Membrane Glycoprotein IIb, PLATELETS, PROGENITORS, rank, RANK ligand, Receptor, Secondary, Signal Transduction, signaling, SINUS, Team-Mueller
@article{cordeiro_integrin-alpha_2016,
title = {Integrin-Alpha IIb Identifies Murine Lymph Node Lymphatic Endothelial Cells Responsive to RANKL},
author = {Olga G Cordeiro and Mélanie Chypre and Nathalie Brouard and Simon Rauber and Farouk Alloush and Monica Romera-Hernandez and Cécile Bénézech and Zhi Li and Anita Eckly and Mark C Coles and Antal Rot and Hideo Yagita and Catherine Léon and Burkhard Ludewig and Tom Cupedo and François Lanza and Christopher G Mueller},
doi = {10.1371/journal.pone.0151848},
issn = {1932-6203},
year = {2016},
date = {2016-01-01},
journal = {PloS One},
volume = {11},
number = {3},
pages = {e0151848},
abstract = {Microenvironment and activation signals likely imprint heterogeneity in the lymphatic endothelial cell (LEC) population. Particularly LECs of secondary lymphoid organs are exposed to different cell types and immune stimuli. However, our understanding of the nature of LEC activation signals and their cell source within the secondary lymphoid organ in the steady state remains incomplete. Here we show that integrin alpha 2b (ITGA2b), known to be carried by platelets, megakaryocytes and hematopoietic progenitors, is expressed by a lymph node subset of LECs, residing in medullary, cortical and subcapsular sinuses. In the subcapsular sinus, the floor but not the ceiling layer expresses the integrin, being excluded from ACKR4+ LECs but overlapping with MAdCAM-1 expression. ITGA2b expression increases in response to immunization, raising the possibility that heterogeneous ITGA2b levels reflect variation in exposure to activation signals. We show that alterations of the level of receptor activator of NF-κB ligand (RANKL), by overexpression, neutralization or deletion from stromal marginal reticular cells, affected the proportion of ITGA2b+ LECs. Lymph node LECs but not peripheral LECs express RANK. In addition, we found that lymphotoxin-β receptor signaling likewise regulated the proportion of ITGA2b+ LECs. These findings demonstrate that stromal reticular cells activate LECs via RANKL and support the action of hematopoietic cell-derived lymphotoxin.},
keywords = {Activation, Animals, Cells, Cultured, Endothelial Cells, ENDOTHELIAL-CELLS, Expression, Fibronectins, Immunization, Immunology, immunopathology, Inbred C57BL, infection, ligand, LYMPH, LYMPH NODE, Lymph Nodes, lymphoid organs, Lymphotoxin, Lymphotoxin-beta, Mice, murine, NF-kappaB, Platelet Membrane Glycoprotein IIb, PLATELETS, PROGENITORS, rank, RANK ligand, Receptor, Secondary, Signal Transduction, signaling, SINUS, Team-Mueller},
pubstate = {published},
tppubtype = {article}
}
Flacher Vincent, Neuberg Patrick, Point Floriane, Daubeuf François, Muller Quentin, Sigwalt David, Fauny Jean-Daniel, Remy Jean-Serge, Frossard Nelly, Wagner Alain, Mueller Christopher G, Schaeffer Evelyne
Mannoside Glycolipid Conjugates Display Anti-inflammatory Activity by Inhibition of Toll-like Receptor-4 Mediated Cell Activation Article de journal
Dans: ACS chemical biology, vol. 10, non 12, p. 2697–2705, 2015, ISSN: 1554-8937.
Résumé | Liens | BibTeX | Étiquettes: Activation, Animals, Anti-Inflammatory Agents, Carbohydrate Sequence, CD14, Cell Membrane, Cells, Chemistry, Cultured, cytokine, Dendritic Cells, development, disease, Glycolipids, Human, Humans, immunopathology, Inbred BALB C, inflammation, inhibition, lipid, lipopolysaccharide, Lipopolysaccharides, LPS, LUNG, Mannosides, Maturation, Membrane, Mice, monocyte, Monocytes, mouse, neutrophils, NF-kappaB, Pneumonia, Protein-Serine-Threonine Kinases, Receptor, secretion, signaling, Structure-Activity Relationship, Tail, Team-Mueller, TLR4, Toll-Like Receptor 4
@article{flacher_mannoside_2015b,
title = {Mannoside Glycolipid Conjugates Display Anti-inflammatory Activity by Inhibition of Toll-like Receptor-4 Mediated Cell Activation},
author = {Vincent Flacher and Patrick Neuberg and Floriane Point and François Daubeuf and Quentin Muller and David Sigwalt and Jean-Daniel Fauny and Jean-Serge Remy and Nelly Frossard and Alain Wagner and Christopher G Mueller and Evelyne Schaeffer},
doi = {10.1021/acschembio.5b00552},
issn = {1554-8937},
year = {2015},
date = {2015-12-01},
journal = {ACS chemical biology},
volume = {10},
number = {12},
pages = {2697--2705},
abstract = {Inhibition of excessive Toll-like receptor 4 (TLR4) signaling is a therapeutic approach pursued for many inflammatory diseases. We report that Mannoside Glycolipid Conjugates (MGCs) selectively blocked TLR4-mediated activation of human monocytes and monocyte-derived dendritic cells (DCs) by lipopolysaccharide (LPS). They potently suppressed pro-inflammatory cytokine secretion and maturation of DCs exposed to LPS, leading to impaired T cell stimulation. MGCs did not interfere with LPS and could act in a delayed manner, hours after LPS stimulation. Their inhibitory action required both the sugar heads and the lipid chain, although the nature of the sugar and the structure of the lipid tail could be modified. They blocked early signaling events at the cell membrane, enhanced internalization of CD14 receptors, and prevented colocalization of CD14 and TLR4, thereby abolishing NF-κB nuclear translocation. When the best lead conjugate was tested in a mouse model of LPS-induced acute lung inflammation, it displayed an anti-inflammatory action by suppressing the recruitment of neutrophils. Thus, MGCs could serve as promising leads for the development of selective TLR4 antagonistic agents for inflammatory diseases.},
keywords = {Activation, Animals, Anti-Inflammatory Agents, Carbohydrate Sequence, CD14, Cell Membrane, Cells, Chemistry, Cultured, cytokine, Dendritic Cells, development, disease, Glycolipids, Human, Humans, immunopathology, Inbred BALB C, inflammation, inhibition, lipid, lipopolysaccharide, Lipopolysaccharides, LPS, LUNG, Mannosides, Maturation, Membrane, Mice, monocyte, Monocytes, mouse, neutrophils, NF-kappaB, Pneumonia, Protein-Serine-Threonine Kinases, Receptor, secretion, signaling, Structure-Activity Relationship, Tail, Team-Mueller, TLR4, Toll-Like Receptor 4},
pubstate = {published},
tppubtype = {article}
}
Schaeffer Evelyne, Flacher Vincent, Papageorgiou Vasiliki, Decossas Marion, Fauny Jean-Daniel, Krämer Melanie, Mueller Christopher G
Dermal CD14(+) Dendritic Cell and Macrophage Infection by Dengue Virus Is Stimulated by Interleukin-4 Article de journal
Dans: The Journal of Investigative Dermatology, vol. 135, non 7, p. 1743–1751, 2015, ISSN: 1523-1747.
Résumé | Liens | BibTeX | Étiquettes: Abdominal Wall, Activation, Adhesion, adhesion molecules, Antigen-Presenting Cells, arbovirus, C-Type, Cell Adhesion, Cell Adhesion Molecules, Cell Surface, Cells, Chemistry, Confocal, Cultured, cytokine, Cytokines, cytology, Dendritic Cells, Dengue, Dengue virus, DERMAL DENDRITIC CELLS, Dermatitis, DERMIS, development, disease, Enzyme-Linked Immunosorbent Assay, Epidermal Cells, Epidermis, Human, Humans, ICAM-3, IL-4, Immunology, immunopathology, infection, Interleukin-4, Langerhans Cells, LECTIN, Lectins, Lymphocyte Activation, Macrophage, Macrophages, metabolism, Microscopy, pathogenicity, physiopathology, Receptor, Receptors, Scabies, Sensitivity and Specificity, Skin, Skin Diseases, SUBSETS, T CELL ACTIVATION, target, Team-Mueller, TNF ALPHA, Viral, viral Infection, Viral Load, virology, virus
@article{schaeffer_dermal_2015b,
title = {Dermal CD14(+) Dendritic Cell and Macrophage Infection by Dengue Virus Is Stimulated by Interleukin-4},
author = {Evelyne Schaeffer and Vincent Flacher and Vasiliki Papageorgiou and Marion Decossas and Jean-Daniel Fauny and Melanie Krämer and Christopher G Mueller},
doi = {10.1038/jid.2014.525},
issn = {1523-1747},
year = {2015},
date = {2015-07-01},
journal = {The Journal of Investigative Dermatology},
volume = {135},
number = {7},
pages = {1743--1751},
abstract = {Dengue virus (DENV) is responsible for the most prevalent arthropod-borne viral infection in humans. Events decisive for disease development occur in the skin after virus inoculation by the mosquito. Yet, the role of human dermis-resident immune cells in dengue infection and disease remains elusive. Here we investigated how dermal dendritic cells (dDCs) and macrophages (dMs) react to DENV and impact on immunopathology. We show that both CD1c(+) and CD14(+) dDC subsets were infected, but viral load greatly increased in CD14(+) dDCs upon IL-4 stimulation, which correlated with upregulation of virus-binding lectins Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Nonintegrin (DC-SIGN/CD209) and mannose receptor (CD206). IL-4 also enhanced T-cell activation by dDCs, which was further increased upon dengue infection. dMs purified from digested dermis were initially poorly infected but actively replicated the virus and produced TNF-α upon lectin upregulation in response to IL-4. DC-SIGN(+) cells are abundant in inflammatory skin with scabies infection or Th2-type dermatitis, suggesting that skin reactions to mosquito bites heighten the risk of infection and subsequent immunopathology. Our data identify dDCs and dMs as primary arbovirus target cells in humans and suggest that dDCs initiate a potent virus-directed T-cell response, whereas dMs fuel the inflammatory cascade characteristic of dengue fever.},
keywords = {Abdominal Wall, Activation, Adhesion, adhesion molecules, Antigen-Presenting Cells, arbovirus, C-Type, Cell Adhesion, Cell Adhesion Molecules, Cell Surface, Cells, Chemistry, Confocal, Cultured, cytokine, Cytokines, cytology, Dendritic Cells, Dengue, Dengue virus, DERMAL DENDRITIC CELLS, Dermatitis, DERMIS, development, disease, Enzyme-Linked Immunosorbent Assay, Epidermal Cells, Epidermis, Human, Humans, ICAM-3, IL-4, Immunology, immunopathology, infection, Interleukin-4, Langerhans Cells, LECTIN, Lectins, Lymphocyte Activation, Macrophage, Macrophages, metabolism, Microscopy, pathogenicity, physiopathology, Receptor, Receptors, Scabies, Sensitivity and Specificity, Skin, Skin Diseases, SUBSETS, T CELL ACTIVATION, target, Team-Mueller, TNF ALPHA, Viral, viral Infection, Viral Load, virology, virus},
pubstate = {published},
tppubtype = {article}
}
Duheron V, Hess E, Duval M, Decossas M, Castaneda B, Klopper J E, Amoasii L, Barbaroux J B, Williams I R, Yagita H, Penninger J, Choi Y, Lezot F, Groves R, Paus R, Mueller C G
Receptor activator of NF-kappaB (RANK) stimulates the proliferation of epithelial cells of the epidermo-pilosebaceous unit Article de journal
Dans: Proc.Natl.Acad.Sci.U.S.A, vol. 108, non 1091-6490 (Electronic), p. 5342–5347, 2011.
Résumé | Liens | BibTeX | Étiquettes: Activation, Animals, Cell Proliferation, Chemistry, cytology, Epidermis, Epithelial Cells, function, Genetics, Growth, Hair, hair follicle, Homeostasis, Immunology, Inbred C57BL, ligand, metabolism, Mice, NF-kappa B, NF-kappaB, Nude, Osteoprotegerin, physiology, Proliferation, rank, RANK ligand, Receptor, Receptor Activator of Nuclear Factor-kappa B, signaling, Skin, Skin Transplantation, stem, Stem Cells, Team-Mueller, transgenic, TRANSGENIC MICE, TRANSPLANTATION
@article{duheron_receptor_2011,
title = {Receptor activator of NF-kappaB (RANK) stimulates the proliferation of epithelial cells of the epidermo-pilosebaceous unit},
author = {V Duheron and E Hess and M Duval and M Decossas and B Castaneda and J E Klopper and L Amoasii and J B Barbaroux and I R Williams and H Yagita and J Penninger and Y Choi and F Lezot and R Groves and R Paus and C G Mueller},
doi = {10.1073/pnas.1013054108},
year = {2011},
date = {2011-03-01},
journal = {Proc.Natl.Acad.Sci.U.S.A},
volume = {108},
number = {1091-6490 (Electronic)},
pages = {5342--5347},
abstract = {Receptor activator of NF-kappaB (RANK), known for controlling bone mass, has been recognized for its role in epithelial cell activation of the mammary gland. Because bone and the epidermo-pilosebaceous unit of the skin share a lifelong renewal activity where similar molecular players operate, and because mammary glands and hair follicles are both skin appendages, we have addressed the function of RANK in the hair follicle and the epidermis. Here, we show that mice deficient in RANK ligand (RANKL) are unable to initiate a new growth phase of the hair cycle and display arrested epidermal homeostasis. However, transgenic mice overexpressing RANK in the hair follicle or administration of recombinant RANKL both activate the hair cycle and epidermal growth. RANK is expressed by the hair follicle germ and bulge stem cells and the epidermal basal cells, cell types implicated in the renewal of the epidermo-pilosebaceous unit. RANK signaling is dispensable for the formation of the stem cell compartment and the inductive hair follicle mesenchyme, and the hair cycle can be rescued by Rankl knockout skin transplantation onto nude mice. RANKL is actively transcribed by the hair follicle at initiation of its growth phase, providing a mechanism for stem cell RANK engagement and hair-cycle entry. Thus, RANK-RANKL regulates hair renewal and epidermal homeostasis and provides a link between these two activities},
keywords = {Activation, Animals, Cell Proliferation, Chemistry, cytology, Epidermis, Epithelial Cells, function, Genetics, Growth, Hair, hair follicle, Homeostasis, Immunology, Inbred C57BL, ligand, metabolism, Mice, NF-kappa B, NF-kappaB, Nude, Osteoprotegerin, physiology, Proliferation, rank, RANK ligand, Receptor, Receptor Activator of Nuclear Factor-kappa B, signaling, Skin, Skin Transplantation, stem, Stem Cells, Team-Mueller, transgenic, TRANSGENIC MICE, TRANSPLANTATION},
pubstate = {published},
tppubtype = {article}
}
Kwan W H, Boix C, Gougelet N, Fridman W H, Mueller C G
LPS induces rapid IL-10 release by M-CSF-conditioned tolerogenic dendritic cell precursors Article de journal
Dans: Journal of Leukocyte Biology, vol. 82, non 0741-5400 (Print), p. 133–141, 2007.
Résumé | BibTeX | Étiquettes: Activation, APC, Cell Differentiation, COLONY-STIMULATING FACTOR, cytokine, Cytokines, cytology, Dendritic Cells, Differentiation, GM-CSF, Human, Humans, IL-10, IL10, IMMATURE, immune response, Immune Tolerance, Immunity, Immunology, inflammation, interleukin 10, Interleukin-10, lipopolysaccharide, Lipopolysaccharides, LPS, Macrophage, Macrophage Colony-Stimulating Factor, Maturation, metabolism, MODULATION, monocyte, Monocytes, MYCOBACTERIA, Mycobacterium, Myeloid Cells, Pharmacology, precursor, PRODUCTION, Protein, Receptor, Secondary, T CELL ACTIVATION, Team-Mueller
@article{kwan_lps_2007,
title = {LPS induces rapid IL-10 release by M-CSF-conditioned tolerogenic dendritic cell precursors},
author = {W H Kwan and C Boix and N Gougelet and W H Fridman and C G Mueller},
year = {2007},
date = {2007-07-01},
journal = {Journal of Leukocyte Biology},
volume = {82},
number = {0741-5400 (Print)},
pages = {133--141},
abstract = {Dendritic cells (DC) obtained by culturing myeloid precursors in GM-CSF undergo maturation and induce an efficient T cell response when stimulated with microbial products. DC precursors themselves also recognize microbial products, and it remains unclear how these stimulated DC precursors modulate the immune response. We show here that M-CSF-conditioned human DC precursors responded to LPS, Mycobacteria bovis, and inflammatory cytokines by a rapid and robust production of IL-10, largely superior to that observed with immature DC or monocytes. The endogenous IL-10 restrained the DC precursors from converting into professional APC, as blocking the IL-10 receptor in the presence of LPS resulted in the formation of efficient T cell stimulators. LPS stimulation concomitant with DC differentiation gave rise to immature DC, which were tolerant to a secondary LPS exposure. Furthermore, the LPS-activated DC precursors reduced bystander DC maturation and anti-CD3/CD28-triggered T cell activation. These data suggest that when exposed to inflammatory or microbial signals, M-CSF-conditioned DC precursors can participate in the modulation of inflammation and immune response by rapid release of IL-10},
keywords = {Activation, APC, Cell Differentiation, COLONY-STIMULATING FACTOR, cytokine, Cytokines, cytology, Dendritic Cells, Differentiation, GM-CSF, Human, Humans, IL-10, IL10, IMMATURE, immune response, Immune Tolerance, Immunity, Immunology, inflammation, interleukin 10, Interleukin-10, lipopolysaccharide, Lipopolysaccharides, LPS, Macrophage, Macrophage Colony-Stimulating Factor, Maturation, metabolism, MODULATION, monocyte, Monocytes, MYCOBACTERIA, Mycobacterium, Myeloid Cells, Pharmacology, precursor, PRODUCTION, Protein, Receptor, Secondary, T CELL ACTIVATION, Team-Mueller},
pubstate = {published},
tppubtype = {article}
}
Mueller C G, Boix C, Kwan W H, Daussy C, Fournier E, Fridman W H, Molina T J
Critical role of monocytes to support normal B cell and diffuse large B cell lymphoma survival and proliferation Article de journal
Dans: Journal of Leukocyte Biology, vol. 82, non 0741-5400 (Print), p. 567–575, 2007.
Résumé | BibTeX | Étiquettes: Activation, Antigen, Antigens, B CELL ACTIVATION, B CELLS, B-Cell, B-Cell Activation Factor Receptor, B-Lymphocytes, Biological, BLOOD, CC, CD14, CD40, Cell Division, Cell Proliferation, Cell Survival, Chemokine CCL5, chemokines, Coculture, cytology, Dendritic Cells, Differentiation, Diffuse, Enzyme-Linked Immunosorbent Assay, Flow Cytometry, Human, Humans, IL-2, Immunoenzyme Techniques, Interleukin-2, Large B-Cell, Lymph Nodes, LYMPHOMA, metabolism, monocyte, Monocytes, Myeloid Cells, pathology, Proliferation, Protein, Receptor, Reverse Transcriptase Polymerase Chain Reaction, survival, Team-Mueller, tumor, Tumor Markers
@article{mueller_critical_2007,
title = {Critical role of monocytes to support normal B cell and diffuse large B cell lymphoma survival and proliferation},
author = {C G Mueller and C Boix and W H Kwan and C Daussy and E Fournier and W H Fridman and T J Molina},
year = {2007},
date = {2007-01-01},
journal = {Journal of Leukocyte Biology},
volume = {82},
number = {0741-5400 (Print)},
pages = {567--575},
abstract = {Large B cell lymphomas can comprise numerous CD14+ cells in the tumor stroma, which raises the question of whether monocytes can support B cell survival and proliferation. We show that the coculture of monocytes with B cells from peripheral blood or from diffuse large B cell lymphoma enabled prolonged B cell survival. Under these conditions, diffuse large lymphoma B cells proliferated, and addition of B cell-activating factor of the TNF family (BAFF) and IL-2 enhanced cell division. Monocytes and dendritic cells (DC) had similar antiapoptotic activity on healthy B cells but displayed differences with respect to B cell proliferation. Monocytes and cord blood-derived CD14+ cells promoted B cell proliferation in the presence of an anti-CD40 stimulus, whereas DC supported B cell proliferation when activated through the BCR. DC and CD14+ cells were able to induce plasmocyte differentiation. When B cells were activated via the BCR or CD40, they released the leukocyte attractant CCL5, and this chemokine is one of the main chemokines expressed in diffuse large B cell lymphoma. The data support the notion that large B cell lymphoma recruit monocytes via CCL5 to support B cell survival and proliferation},
keywords = {Activation, Antigen, Antigens, B CELL ACTIVATION, B CELLS, B-Cell, B-Cell Activation Factor Receptor, B-Lymphocytes, Biological, BLOOD, CC, CD14, CD40, Cell Division, Cell Proliferation, Cell Survival, Chemokine CCL5, chemokines, Coculture, cytology, Dendritic Cells, Differentiation, Diffuse, Enzyme-Linked Immunosorbent Assay, Flow Cytometry, Human, Humans, IL-2, Immunoenzyme Techniques, Interleukin-2, Large B-Cell, Lymph Nodes, LYMPHOMA, metabolism, monocyte, Monocytes, Myeloid Cells, pathology, Proliferation, Protein, Receptor, Reverse Transcriptase Polymerase Chain Reaction, survival, Team-Mueller, tumor, Tumor Markers},
pubstate = {published},
tppubtype = {article}
}
Durand Stéphanie H, Flacher Vincent, Roméas Annick, Carrouel Florence, Colomb Evelyne, Vincent Claude, Magloire Henry, Couble Marie-Lise, Bleicher Françoise, Staquet Marie-Jeanne, Lebecque Serge, Farges Jean-Christophe
Lipoteichoic acid increases TLR and functional chemokine expression while reducing dentin formation in in vitro differentiated human odontoblasts Article de journal
Dans: Journal of Immunology (Baltimore, Md.: 1950), vol. 176, non 5, p. 2880–2887, 2006, ISSN: 0022-1767.
Résumé | Liens | BibTeX | Étiquettes: Activation, Analysis, bacteria, Biosynthesis, BLOOD, Blood Vessels, Cell Differentiation, Cells, Chemistry, chemokines, COLLAGEN, Cultured, CXCL10, cytology, Dendritic Cells, DENTAL PULP, Dentin, development, Down-Regulation, Expression, extracellular, EXTRACELLULAR MATRIX, Extracellular Matrix Proteins, function, Gene, Gene Expression, Genes, Genetics, Gram-Positive Bacteria, Human, Humans, IMMATURE, Immunology, IN VITRO, In vivo, Innate immune response, lipopolysaccharide, Lipopolysaccharides, metabolism, migration, Odontoblasts, Organ Culture Techniques, Pharmacology, physiology, PRODUCTION, Protein, Proteins, Receptor, recognition, synthesis, Team-Mueller, Teichoic Acids, TLR7, Toll-Like Receptor 2, Up-Regulation
@article{durand_lipoteichoic_2006,
title = {Lipoteichoic acid increases TLR and functional chemokine expression while reducing dentin formation in in vitro differentiated human odontoblasts},
author = {Stéphanie H Durand and Vincent Flacher and Annick Roméas and Florence Carrouel and Evelyne Colomb and Claude Vincent and Henry Magloire and Marie-Lise Couble and Françoise Bleicher and Marie-Jeanne Staquet and Serge Lebecque and Jean-Christophe Farges},
doi = {10.4049/jimmunol.176.5.2880},
issn = {0022-1767},
year = {2006},
date = {2006-03-01},
journal = {Journal of Immunology (Baltimore, Md.: 1950)},
volume = {176},
number = {5},
pages = {2880--2887},
abstract = {Gram-positive bacteria entering the dentinal tissue during the carious process are suspected to influence the immune response in human dental pulp. Odontoblasts situated at the pulp/dentin interface are the first cells encountered by these bacteria and therefore could play a crucial role in this response. In the present study, we found that in vitro-differentiated odontoblasts constitutively expressed the pattern recognition receptor TLR1-6 and 9 genes but not TLR7, 8, and 10. Furthermore, lipoteichoic acid (LTA), a wall component of Gram-positive bacteria, triggered the activation of the odontoblasts. LTA up-regulated the expression of its own receptor TLR2, as well as the production of several chemokines. In particular, an increased amount of CCL2 and CXCL10 was detected in supernatants from LTA-stimulated odontoblasts, and those supernatants augmented the migration of immature dendritic cells in vitro compared with controls. Clinical relevance of these observations came from immunohistochemical analysis showing that CCL2 was expressed in vivo by odontoblasts and blood vessels present under active carious lesions but not in healthy dental pulps. In contrast with this inflammatory response, gene expression of major dentin matrix components (type I collagen, dentin sialophosphoprotein) and TGF-beta1 was sharply down-regulated in odontoblasts by LTA. Taken together, these data suggest that odontoblasts activated through TLR2 by Gram-positive bacteria LTA are able to initiate an innate immune response by secreting chemokines that recruit immature dendritic cells while down-regulating their specialized functions of dentin matrix synthesis and mineralization.},
keywords = {Activation, Analysis, bacteria, Biosynthesis, BLOOD, Blood Vessels, Cell Differentiation, Cells, Chemistry, chemokines, COLLAGEN, Cultured, CXCL10, cytology, Dendritic Cells, DENTAL PULP, Dentin, development, Down-Regulation, Expression, extracellular, EXTRACELLULAR MATRIX, Extracellular Matrix Proteins, function, Gene, Gene Expression, Genes, Genetics, Gram-Positive Bacteria, Human, Humans, IMMATURE, Immunology, IN VITRO, In vivo, Innate immune response, lipopolysaccharide, Lipopolysaccharides, metabolism, migration, Odontoblasts, Organ Culture Techniques, Pharmacology, physiology, PRODUCTION, Protein, Proteins, Receptor, recognition, synthesis, Team-Mueller, Teichoic Acids, TLR7, Toll-Like Receptor 2, Up-Regulation},
pubstate = {published},
tppubtype = {article}
}
Cremer I, Dieu-Nosjean M C, Mar�chal S, Dezutter-Dambuyant C, Goddard S, Adams D, Winter N, Menetrier-Caux C, Saut�s-Fridman C, Fridman W H, Mueller C G F
Long-lived immature dendritic cells mediated by TRANCE-RANK interaction Article de journal
Dans: Blood, vol. 100, non 10, p. 3646–3655, 2002.
Résumé | BibTeX | Étiquettes: Activation, Antigen, CD40, CD40 Ligand, CHEMOTAXIS, Cytokines, Dendritic Cells, Epidermis, Expression, Homeostasis, Human, IMMATURE, l, ligand, lipopolysaccharide, Longevity, LPS, LYMPH, LYMPH NODE, Lymph Nodes, M-CSF, Macrophage, Macrophages, Maturation, naive, Necrosis, NF-kappaB, PROGENITOR CELLS, rank, Receptor, survival, T CELL ACTIVATION, T CELLS, Team-Mueller, TRANCE, tumor, viability
@article{cremer_long-lived_2002,
title = {Long-lived immature dendritic cells mediated by TRANCE-RANK interaction},
author = {I Cremer and M C Dieu-Nosjean and S Mar�chal and C Dezutter-Dambuyant and S Goddard and D Adams and N Winter and C Menetrier-Caux and C Saut�s-Fridman and W H Fridman and C G F Mueller},
year = {2002},
date = {2002-01-01},
journal = {Blood},
volume = {100},
number = {10},
pages = {3646--3655},
abstract = {Immature dendritic cells (DCs) reside in Interstitial tissues (Int-DC) or in the epidermis, where they capture antigen and, thereafter, mature and migrate to draining lymph nodes (LNs), where they present processed antigen to T cells. We have Identified Int-DCs that express both TRANCE (tumor necrosis factor-related activation-induced cytokine) and RANK (receptor activator of NF-kappaB) and have generated these cells from CD34(+) human progenitor cells using macrophage colony-stimulating factor (M-CSF). These CD34(+)-derived Int-DCs, which are related to macrophages, are long-lived, but addition of soluble RANK leads to significant reduction of cell viability and BcI-2 expression. This suggests that constitutive TRANCE-RANK interaction is responsible for CD34(+)-derived Int-DC longevity. Conversely, CD1a(+) DCs express only RANK and are short-lived. However, they can be rescued from cell death either by recombinant soluble TRANCE or by CD34(+)-derived Int-DCs. CD34(+)-derived Int-DCs mature in response to lipopolysaccharide (LPS) plus CD40 ligand (L) and become capable of CCL21/CCL19-mediated chemotaxis and naive T-cell activation. Upon maturation, they lose TRANCE, making them, like CD1a(+) DCs, dependent on exogenous TRANCE for survival. These findings provide evidence that TRANCE and RANK play important roles in the homeostasis of DCs. (C) 2002 by The American Society of Hematology},
keywords = {Activation, Antigen, CD40, CD40 Ligand, CHEMOTAXIS, Cytokines, Dendritic Cells, Epidermis, Expression, Homeostasis, Human, IMMATURE, l, ligand, lipopolysaccharide, Longevity, LPS, LYMPH, LYMPH NODE, Lymph Nodes, M-CSF, Macrophage, Macrophages, Maturation, naive, Necrosis, NF-kappaB, PROGENITOR CELLS, rank, Receptor, survival, T CELL ACTIVATION, T CELLS, Team-Mueller, TRANCE, tumor, viability},
pubstate = {published},
tppubtype = {article}
}