Publications
2021
Chen Di, Roychowdhury-Sinha Arghyashree, Prakash Pragya, Lan Xiao, Fan Wenmin, Goto Akira, Hoffmann Jules A.
A time course transcriptomic analysis of host and injected oncogenic cells reveals new aspects of Drosophila immune defenses Article de journal
Dans: PNAS, vol. 118, no. 12, 2021.
Résumé | Liens | BibTeX | Étiquettes: cancer, chemoreceptor, Drosophila melanogaster, goto, hoffmann, innate immunity, M3i, RasV12
@article{chen2021,
title = {A time course transcriptomic analysis of host and injected oncogenic cells reveals new aspects of Drosophila immune defenses},
author = {Di Chen and Arghyashree Roychowdhury-Sinha and Pragya Prakash and Xiao Lan and Wenmin Fan and Akira Goto and Jules A. Hoffmann},
url = {https://www.pnas.org/content/118/12/e2100825118},
doi = {https://doi.org/10.1073/pnas.2100825118},
year = {2021},
date = {2021-03-23},
journal = {PNAS},
volume = {118},
number = {12},
abstract = {Oncogenic RasV12 cells [A. Simcox et al., PLoS Genet. 4, e1000142 (2008)] injected into adult males proliferated massively after a lag period of several days, and led to the demise of the flies after 2 to 3 wk. The injection induced an early massive transcriptomic response that, unexpectedly, included more than 100 genes encoding chemoreceptors of various families. The kinetics of induction and the identities of the induced genes differed markedly from the responses generated by injections of microbes. Subsequently, hundreds of genes were up-regulated, attesting to intense catabolic activities in the flies, active tracheogenesis, and cuticulogenesis, as well as stress and inflammation-type responses. At 11 d after the injections, GFP-positive oncogenic cells isolated from the host flies exhibited a markedly different transcriptomic profile from that of the host and distinct from that at the time of their injection, including in particular up-regulated expression of genes typical for cells engaged in the classical antimicrobial response of Drosophila.},
keywords = {cancer, chemoreceptor, Drosophila melanogaster, goto, hoffmann, innate immunity, M3i, RasV12},
pubstate = {published},
tppubtype = {article}
}
2020
R Marquet C Verriez J-C Paillart, Stupfler B
Les APOBEC : histoire d’une famille de protéines antivirales et mutagènes. Article de journal
Dans: Virologie, vol. 24, no. 6, p. 381-418, 2020.
Résumé | BibTeX | Étiquettes: APOBEC3, cancer, Facteurs de restriction, MARQUET, PAILLART, Unité ARN, vif, VIH-1
@article{Verriez2020,
title = {Les APOBEC : histoire d’une famille de protéines antivirales et mutagènes.},
author = {C Verriez, R Marquet, J-C Paillart and B Stupfler},
year = {2020},
date = {2020-01-01},
journal = {Virologie},
volume = {24},
number = {6},
pages = {381-418},
abstract = {La réponse immunitaire innée est une réponse non spécifique qui constitue la première ligne de défense en cas d’infection, notamment en permettant l’élimination des pathogènes par phagocytose ou apoptose. Au sein des cellules immunitaires, cette réponse innée se caractérise entre autres par la synthèse de protéines nommées facteurs de restriction dont le rôle est d’inhiber la réplication virale. Parmi ces facteurs, les protéines de la famille APOBEC3 (Apolipoprotein B mRNA-editing Enzyme Catalytic polypeptide-like 3 ou A3) constituent des facteurs antiviraux majeurs qui ciblent de nombreux types de virus. L’une des cibles des A3 est le virus de l’immunodéficience humaine de type 1 (VIH-1) : l’activité désaminase de certaines A3 convertit une fraction des cytidines du génome viral en uridines et perturbe son expression. Néanmoins, le VIH-1 contrecarre les A3 en exprimant la protéine Vif qui les inhibe en détournant divers mécanismes cellulaires. Par ailleurs, les APOBEC3 participent au maintien de l’intégrité génétique par l’inhibition des rétroéléments mais contribuent également à la cancérogenèse, à l’image d’A3A et A3B, deux facteurs majeurs dans ce processus. L’éventail de leurs activités, combiné aux récentes études montrant leur implication dans la régulation de virus émergents (Zika, SARS-CoV-2), permettent d’envisager les A3 ainsi que leurs partenaires viraux comme axes thérapeutiques.},
keywords = {APOBEC3, cancer, Facteurs de restriction, MARQUET, PAILLART, Unité ARN, vif, VIH-1},
pubstate = {published},
tppubtype = {article}
}
2017
Nehmar Ramzi, Alsaleh Ghada, Voisin Benjamin, Flacher Vincent, Mariotte Alexandre, Saferding Victoria, Puchner Antonia, Niederreiter Birgit, Vandamme Thierry, Schabbauer Gernot, Kastner Philippe, Chan Susan, Kirstetter Peggy, Holcmann Martin, Mueller Christopher, Sibilia Jean, Bahram Seiamak, Blüml Stephan, Georgel Philippe
Therapeutic Modulation of Plasmacytoid Dendritic Cells in Experimental Arthritis Article de journal
Dans: Arthritis & Rheumatology (Hoboken, N.J.), vol. 69, no. 11, p. 2124–2135, 2017, ISSN: 2326-5205.
Résumé | Liens | BibTeX | Étiquettes: Activation, Adjuvants, Aminoquinolines, Analysis, Animal, Animals, arthritis, Assay, cancer, Cells, cytokine, Cytokines, Dendritic Cells, DEPLETION, Disease Models, drug effects, Enzyme-Linked Immunosorbent Assay, Experimental, Flow Cytometry, Gene Expression Profiling, Genetics, GLYCOPROTEIN, Glycoproteins, Human, Humans, IFN, IKAROS, Ikaros Transcription Factor, imiquimod, Immunologic, Immunology, immunopathology, inflammation, interferon, Interferon Type I, interferons, Knockout, Membrane, Membrane Glycoproteins, METHOD, methods, Mice, MODULATION, mouse, Necrosis, NECROSIS-FACTOR-ALPHA, pathogenesis, Patients, Pharmacology, physiology, plasmacytoid dendritic cells, Protein, Receptor, Reverse Transcriptase Polymerase Chain Reaction, rheumatoid, rheumatoid arthritis, Serum, signaling, Team-Mueller, TLR7, Toll-Like Receptor 7, TOPICAL APPLICATION, Transcription, TRANSCRIPTION FACTOR, transcriptome, transgenic, tumor, Tumor Necrosis Factor, Tumor Necrosis Factor-alpha
@article{nehmar_therapeutic_2017,
title = {Therapeutic Modulation of Plasmacytoid Dendritic Cells in Experimental Arthritis},
author = {Ramzi Nehmar and Ghada Alsaleh and Benjamin Voisin and Vincent Flacher and Alexandre Mariotte and Victoria Saferding and Antonia Puchner and Birgit Niederreiter and Thierry Vandamme and Gernot Schabbauer and Philippe Kastner and Susan Chan and Peggy Kirstetter and Martin Holcmann and Christopher Mueller and Jean Sibilia and Seiamak Bahram and Stephan Blüml and Philippe Georgel},
doi = {10.1002/art.40225},
issn = {2326-5205},
year = {2017},
date = {2017-01-01},
journal = {Arthritis & Rheumatology (Hoboken, N.J.)},
volume = {69},
number = {11},
pages = {2124--2135},
abstract = {OBJECTIVE: The role of plasmacytoid dendritic cells (PDCs) and type I interferons (IFNs) in rheumatoid arthritis (RA) remains a subject of controversy. This study was undertaken to explore the contribution of PDCs and type I IFNs to RA pathogenesis using various animal models of PDC depletion and to monitor the effect of localized PDC recruitment and activation on joint inflammation and bone damage.
METHODS: Mice with K/BxN serum-induced arthritis, collagen-induced arthritis, and human tumor necrosis factor transgene insertion were studied. Symptoms were evaluated by visual scoring, quantification of paw swelling, determination of cytokine levels by enzyme-linked immunosorbent assay, and histologic analysis. Imiquimod-dependent therapeutic effects were monitored by transcriptome analysis (using quantitative reverse transcriptase-polymerase chain reaction) and flow cytometric analysis of the periarticular tissue.
RESULTS: PDC-deficient mice showed exacerbation of inflammatory and arthritis symptoms after arthritogenic serum transfer. In contrast, enhancing PDC recruitment and activation to arthritic joints by topical application of the Toll-like receptor 7 (TLR-7) agonist imiquimod significantly ameliorated arthritis in various mouse models. Imiquimod induced an IFN signature and led to reduced infiltration of inflammatory cells.
CONCLUSION: The therapeutic effects of imiquimod on joint inflammation and bone destruction are dependent on TLR-7 sensing by PDCs and type I IFN signaling. Our findings indicate that local recruitment and activation of PDCs represents an attractive therapeutic opportunity for RA patients.},
keywords = {Activation, Adjuvants, Aminoquinolines, Analysis, Animal, Animals, arthritis, Assay, cancer, Cells, cytokine, Cytokines, Dendritic Cells, DEPLETION, Disease Models, drug effects, Enzyme-Linked Immunosorbent Assay, Experimental, Flow Cytometry, Gene Expression Profiling, Genetics, GLYCOPROTEIN, Glycoproteins, Human, Humans, IFN, IKAROS, Ikaros Transcription Factor, imiquimod, Immunologic, Immunology, immunopathology, inflammation, interferon, Interferon Type I, interferons, Knockout, Membrane, Membrane Glycoproteins, METHOD, methods, Mice, MODULATION, mouse, Necrosis, NECROSIS-FACTOR-ALPHA, pathogenesis, Patients, Pharmacology, physiology, plasmacytoid dendritic cells, Protein, Receptor, Reverse Transcriptase Polymerase Chain Reaction, rheumatoid, rheumatoid arthritis, Serum, signaling, Team-Mueller, TLR7, Toll-Like Receptor 7, TOPICAL APPLICATION, Transcription, TRANSCRIPTION FACTOR, transcriptome, transgenic, tumor, Tumor Necrosis Factor, Tumor Necrosis Factor-alpha},
pubstate = {published},
tppubtype = {article}
}
METHODS: Mice with K/BxN serum-induced arthritis, collagen-induced arthritis, and human tumor necrosis factor transgene insertion were studied. Symptoms were evaluated by visual scoring, quantification of paw swelling, determination of cytokine levels by enzyme-linked immunosorbent assay, and histologic analysis. Imiquimod-dependent therapeutic effects were monitored by transcriptome analysis (using quantitative reverse transcriptase-polymerase chain reaction) and flow cytometric analysis of the periarticular tissue.
RESULTS: PDC-deficient mice showed exacerbation of inflammatory and arthritis symptoms after arthritogenic serum transfer. In contrast, enhancing PDC recruitment and activation to arthritic joints by topical application of the Toll-like receptor 7 (TLR-7) agonist imiquimod significantly ameliorated arthritis in various mouse models. Imiquimod induced an IFN signature and led to reduced infiltration of inflammatory cells.
CONCLUSION: The therapeutic effects of imiquimod on joint inflammation and bone destruction are dependent on TLR-7 sensing by PDCs and type I IFN signaling. Our findings indicate that local recruitment and activation of PDCs represents an attractive therapeutic opportunity for RA patients.
2015
Mairhofer David G, Ortner Daniela, Tripp Christoph H, Schaffenrath Sandra, Fleming Viktor, Heger Lukas, Komenda Kerstin, Reider Daniela, Dudziak Diana, Chen Suzie, Becker Jürgen C, Flacher Vincent, Stoitzner Patrizia
Impaired gp100-Specific CD8(+) Ŧ-Cell Responses in the Presence of Myeloid-Derived Suppressor Cells in a Spontaneous Mouse Melanoma Model Article de journal
Dans: The Journal of Investigative Dermatology, vol. 135, no. 11, p. 2785–2793, 2015, ISSN: 1523-1747.
Résumé | Liens | BibTeX | Étiquettes: Analysis of Variance, Animal, Animals, Antigen, cancer, CARCINOGENESIS, CD8-Positive T-Lymphocytes, Cell Proliferation, Cultured, DERMATOLOGY, development, disease, Disease Models, Experimental, GLYCOPROTEIN, gp100 Melanoma Antigen, Growth, Human, Humans, Immunity, Immunologic, IN VITRO, Inbred C57BL, iNOS, Leukocytes, LYMPH, LYMPH NODE, Lymph Nodes, Lymphocyte Activation, MELANOCYTES, Melanoma, Mice, mouse, murine, NITRIC OXIDE, nitric oxide synthase, Phenotype, Proliferation, Random Allocation, Receptor, Regulatory, RESPONSES, Skin, SUBSETS, Suppressor Factors, T CELLS, T-CELLS, T-Lymphocytes, Team-Mueller, Transforming Growth Factor beta, transgenic, tumor, Tumor Cells, tumor immunity
@article{mairhofer_impaired_2015,
title = {Impaired gp100-Specific CD8(+) Ŧ-Cell Responses in the Presence of Myeloid-Derived Suppressor Cells in a Spontaneous Mouse Melanoma Model},
author = {David G Mairhofer and Daniela Ortner and Christoph H Tripp and Sandra Schaffenrath and Viktor Fleming and Lukas Heger and Kerstin Komenda and Daniela Reider and Diana Dudziak and Suzie Chen and Jürgen C Becker and Vincent Flacher and Patrizia Stoitzner},
doi = {10.1038/jid.2015.241},
issn = {1523-1747},
year = {2015},
date = {2015-11-01},
journal = {The Journal of Investigative Dermatology},
volume = {135},
number = {11},
pages = {2785--2793},
abstract = {Murine tumor models that closely reflect human diseases are important tools to investigate carcinogenesis and tumor immunity. The transgenic (tg) mouse strain tg(Grm1)EPv develops spontaneous melanoma due to ectopic overexpression of the metabotropic glutamate receptor 1 (Grm1) in melanocytes. In the present study, we characterized the immune status and functional properties of immune cells in tumor-bearing mice. Melanoma development was accompanied by a reduction in the percentages of CD4(+) T cells including regulatory T cells (Tregs) in CD45(+) leukocytes present in tumor tissue and draining lymph nodes (LNs). In contrast, the percentages of CD8(+) T cells were unchanged, and these cells showed an activated phenotype in tumor mice. Endogenous melanoma-associated antigen glycoprotein 100 (gp100)-specific CD8(+) T cells were not deleted during tumor development, as revealed by pentamer staining in the skin and draining LNs. They, however, were unresponsive to ex vivo gp100-peptide stimulation in late-stage tumor mice. Interestingly, immunosuppressive myeloid-derived suppressor cells (MDSCs) were recruited to tumor tissue with a preferential accumulation of granulocytic MDSC (grMDSCs) over monocytic MDSC (moMDSCs). Both subsets produced Arginase-1, inducible nitric oxide synthase (iNOS), and transforming growth factor-β and suppressed T-cell proliferation in vitro. In this work, we describe the immune status of a spontaneous melanoma mouse model that provides an interesting tool to develop future immunotherapeutical strategies.},
keywords = {Analysis of Variance, Animal, Animals, Antigen, cancer, CARCINOGENESIS, CD8-Positive T-Lymphocytes, Cell Proliferation, Cultured, DERMATOLOGY, development, disease, Disease Models, Experimental, GLYCOPROTEIN, gp100 Melanoma Antigen, Growth, Human, Humans, Immunity, Immunologic, IN VITRO, Inbred C57BL, iNOS, Leukocytes, LYMPH, LYMPH NODE, Lymph Nodes, Lymphocyte Activation, MELANOCYTES, Melanoma, Mice, mouse, murine, NITRIC OXIDE, nitric oxide synthase, Phenotype, Proliferation, Random Allocation, Receptor, Regulatory, RESPONSES, Skin, SUBSETS, Suppressor Factors, T CELLS, T-CELLS, T-Lymphocytes, Team-Mueller, Transforming Growth Factor beta, transgenic, tumor, Tumor Cells, tumor immunity},
pubstate = {published},
tppubtype = {article}
}
2014
Flacher Vincent, Tripp Christoph H, Mairhofer David G, Steinman Ralph M, Stoitzner Patrizia, Idoyaga Juliana, Romani Nikolaus
Murine Langerin+ dermal dendritic cells prime CD8+ Ŧ cells while Langerhans cells induce cross-tolerance Article de journal
Dans: EMBO molecular medicine, vol. 6, no. 9, p. 1191–1204, 2014, ISSN: 1757-4684.
Résumé | Liens | BibTeX | Étiquettes: agonists, Animals, Antibodies, antibody, Antigen, Antigen Presentation, Antigens, C-Type, C-type lectin, cancer, CD70, CD8-Positive T-Lymphocytes, CD8+ T cells, CD8+ T‐cell responses, Cellular, CROSS-PRESENTATION, Cross-Priming, Cytotoxicity, Dendritic Cells, DERMAL DENDRITIC CELLS, DERMATOLOGY, disease, imiquimod, Immunization, IMMUNOGENICITY, Immunologic Memory, Immunological, Immunology, In vivo, Inbred C57BL, INDUCTION, Intradermal, Langerhans Cells, LECTIN, Lectins, Mannose-Binding Lectins, Maturation, Mice, Models, murine, OVALBUMIN, physiology, priming, RESPONSES, Skin, Surface, T CELLS, T-CELLS, Team-Mueller, tolerance, Vaccination, vaccine, Vaccines
@article{flacher_murine_2014,
title = {Murine Langerin+ dermal dendritic cells prime CD8+ Ŧ cells while Langerhans cells induce cross-tolerance},
author = {Vincent Flacher and Christoph H Tripp and David G Mairhofer and Ralph M Steinman and Patrizia Stoitzner and Juliana Idoyaga and Nikolaus Romani},
doi = {10.15252/emmm.201303283},
issn = {1757-4684},
year = {2014},
date = {2014-09-01},
journal = {EMBO molecular medicine},
volume = {6},
number = {9},
pages = {1191--1204},
abstract = {Skin dendritic cells (DCs) control the immunogenicity of cutaneously administered vaccines. Antigens targeted to DCs via the C-type lectin Langerin/CD207 are cross-presented to CD8(+) T cells in vivo. We investigated the relative roles of Langerhans cells (LCs) and Langerin(+) dermal DCs (dDCs) in different vaccination settings. Poly(I:C) and anti-CD40 agonist antibody promoted cytotoxic responses upon intradermal immunization with ovalbumin (OVA)-coupled anti-Langerin antibodies (Langerin/OVA). This correlated with CD70 upregulation in Langerin(+) dDCs, but not LCs. In chimeric mice where Langerin targeting was restricted to dDCs, CD8(+) T-cell memory was enhanced. Conversely, providing Langerin/OVA exclusively to LCs failed to prime cytotoxicity, despite initial antigen cross-presentation to CD8(+) T cells. Langerin/OVA combined with imiquimod could not prime CD8(+) T cells and resulted in poor cytotoxicity in subsequent responses. This tolerance induction required targeting and maturation of LCs. Altogether, Langerin(+) dDCs prime long-lasting cytotoxic responses, while cross-presentation by LCs negatively influences CD8(+) T-cell priming. Moreover, this highlights that DCs exposed to TLR agonists can still induce tolerance and supports the existence of qualitatively different DC maturation programs.},
keywords = {agonists, Animals, Antibodies, antibody, Antigen, Antigen Presentation, Antigens, C-Type, C-type lectin, cancer, CD70, CD8-Positive T-Lymphocytes, CD8+ T cells, CD8+ T‐cell responses, Cellular, CROSS-PRESENTATION, Cross-Priming, Cytotoxicity, Dendritic Cells, DERMAL DENDRITIC CELLS, DERMATOLOGY, disease, imiquimod, Immunization, IMMUNOGENICITY, Immunologic Memory, Immunological, Immunology, In vivo, Inbred C57BL, INDUCTION, Intradermal, Langerhans Cells, LECTIN, Lectins, Mannose-Binding Lectins, Maturation, Mice, Models, murine, OVALBUMIN, physiology, priming, RESPONSES, Skin, Surface, T CELLS, T-CELLS, Team-Mueller, tolerance, Vaccination, vaccine, Vaccines},
pubstate = {published},
tppubtype = {article}
}
2010
Al-Jamal Khuloud T, Al-Jamal Wafa’ T, Akerman Simon, Podesta Jennifer E, Yilmazer Açelya, Turton John A, Bianco Alberto, Vargesson Neil, Kanthou Chryso, Florence Alexander T, Tozer Gillian M, Kostarelos Kostas
Systemic antiangiogenic activity of cationic poly-L-lysine dendrimer delays tumor growth Article de journal
Dans: Proceedings of the National Academy of Sciences, vol. 107, no. 9, p. 3966–3971, 2010, ISSN: 0027-8424, 1091-6490.
Résumé | Liens | BibTeX | Étiquettes: angiogenesis, cancer, I2CT, nanoparticle, Team-Bianco
@article{al-jamal_systemic_2010,
title = {Systemic antiangiogenic activity of cationic poly-L-lysine dendrimer delays tumor growth},
author = {Khuloud T Al-Jamal and Wafa’ T Al-Jamal and Simon Akerman and Jennifer E Podesta and Açelya Yilmazer and John A Turton and Alberto Bianco and Neil Vargesson and Chryso Kanthou and Alexander T Florence and Gillian M Tozer and Kostas Kostarelos},
url = {https://www.pnas.org/content/107/9/3966},
doi = {10.1073/pnas.0908401107},
issn = {0027-8424, 1091-6490},
year = {2010},
date = {2010-03-01},
urldate = {2020-04-01},
journal = {Proceedings of the National Academy of Sciences},
volume = {107},
number = {9},
pages = {3966--3971},
abstract = {This study describes the previously unreported intrinsic capacity of poly-L-lysine (PLL) sixth generation (G6) dendrimer molecules to exhibit systemic antiangiogenic activity that could lead to solid tumor growth arrest. The PLL-dendrimer-inhibited tubule formation of SVEC4-10 murine endothelial cells and neovascularization in the chick embryo chick chorioallantoic membrane (CAM) assay. Intravenous administration of the PLL-dendrimer molecules into C57BL/6 mice inhibited vascularisation in Matrigel plugs implanted subcutaneously. Antiangiogenic activity was further evidenced using intravital microscopy of tumors grown within dorsal skinfold window chambers. Reduced vascularization of P22 rat sarcoma implanted in the dorsal window chamber of SCID mice was observed following tail vein administration (i.v.) of the PLL dendrimers. Also, the in vivo toxicological profile of the PLL-dendrimer molecules was shown to be safe at the dose regime studied. The antiangiogenic activity of the PLL dendrimer was further shown to be associated with significant suppression of B16F10 solid tumor volume and delayed tumor growth. Enhanced apoptosis/necrosis within tumors of PLL-dendrimer-treated animals only and reduction in the number of CD31 positive cells were observed in comparison to protamine treatment. This study suggests that PLL-dendrimer molecules can exhibit a systemic antiangiogenic activity that may be used for therapy of solid tumors, and in combination with their capacity to carry other therapeutic or diagnostic agents may potentially offer capabilities for the design of theranostic systems.},
keywords = {angiogenesis, cancer, I2CT, nanoparticle, Team-Bianco},
pubstate = {published},
tppubtype = {article}
}
2009
Bosisio M R, Maisonneuve C, Gregoire S, Kettaneh A, Mueller C G, Bridal S L
Ultrasound biomicroscopy: a powerful tool probing murine lymph node size in vivo Article de journal
Dans: Ultrasound Med.Biol., vol. 35, no. 1879-291X (Electronic), p. 1209–1216, 2009.
Résumé | BibTeX | Étiquettes: Acoustic, Animals, Axilla, cancer, Cell Count, Female, Graft Rejection, Hyperplasia, immunodeficiency, In vivo, Inbred C57BL, inflammation, LYMPH, LYMPH NODE, Lymph Nodes, Male, methods, Mice, Microscopy, murine, Observer Variation, pathology, SKIN GRAFT, Skin Transplantation, Team-Mueller, transgenic, TRANSGENIC MICE, ultrasonography
@article{bosisio_ultrasound_2009,
title = {Ultrasound biomicroscopy: a powerful tool probing murine lymph node size in vivo},
author = {M R Bosisio and C Maisonneuve and S Gregoire and A Kettaneh and C G Mueller and S L Bridal},
year = {2009},
date = {2009-07-01},
journal = {Ultrasound Med.Biol.},
volume = {35},
number = {1879-291X (Electronic)},
pages = {1209--1216},
abstract = {Invasive cell-counting in lymph node (LN) is the current reference to assess LN changes due to inflammation, immunodeficiency and cancer in murine models. This work evaluates whether ultrasound biomicroscopy (UBM) can measure LN size alterations noninvasively for a large range of sizes (0.1 mm3 to 22 mm3). Correlation was assessed (rho = 0.91, p textless 0.0001) between invasive cell count and LN volume estimated with UBM (24, 2 to 28-week-old, C57BL/6 mice; 13 same-strain, transgenic mice presenting LN hyperplasia). UBM LN modification screening was applied in a skin-graft rejection model and compared with cell-counting (15 mice). UBM LN-size follow-up with fine temporal sampling was demonstrated from 9 d of age (minimum area 0.13 mm2). Reliability (intraclass correlation coefficient [ICC] textgreater 0.84) and variability of UBM evaluations compared favourably with invasive cell count. UBM provides a noninvasive alternative to cell-counting in mice for early detection and longitudinal screening of LN modifications. This can enable significant reduction in the number of mice and exploration of LNs that would be too small to dissect for cell count},
keywords = {Acoustic, Animals, Axilla, cancer, Cell Count, Female, Graft Rejection, Hyperplasia, immunodeficiency, In vivo, Inbred C57BL, inflammation, LYMPH, LYMPH NODE, Lymph Nodes, Male, methods, Mice, Microscopy, murine, Observer Variation, pathology, SKIN GRAFT, Skin Transplantation, Team-Mueller, transgenic, TRANSGENIC MICE, ultrasonography},
pubstate = {published},
tppubtype = {article}
}
Flacher Vincent, Sparber Florian, Tripp Christoph H, Romani Nikolaus, Stoitzner Patrizia
Targeting of epidermal Langerhans cells with antigenic proteins: attempts to harness their properties for immunotherapy Article de journal
Dans: Cancer immunology, immunotherapy: CII, vol. 58, no. 7, p. 1137–1147, 2009, ISSN: 1432-0851.
Résumé | Liens | BibTeX | Étiquettes: Active, Animals, Antibodies, antibody, Antigen, Antigens, BLOOD, C-Type, cancer, CD, CD4-Positive T-Lymphocytes, CD4+ T cells, CD8-Positive T-Lymphocytes, CD8+ T cells, Dendritic Cells, DERMATOLOGY, DERMIS, Epidermis, Growth, Human, Humans, immune response, IMMUNE-RESPONSES, Immunization, Immunology, Immunotherapy, in situ, In vivo, Inbred BALB C, Inbred C57BL, INDUCTION, Langerhans Cells, LECTIN, Lectins, LYMPH, LYMPH NODE, Lymph Nodes, Major Histocompatibility Complex, Mannose-Binding Lectins, metabolism, methods, MHC class I, MHC class I molecules, Mice, Neoplasm, Neoplasms, OVALBUMIN, Patients, PROGENITORS, Protein, Proteins, RESPONSES, review, Skin, T CELLS, T-CELLS, Team-Mueller, therapy, tumor
@article{flacher_targeting_2009,
title = {Targeting of epidermal Langerhans cells with antigenic proteins: attempts to harness their properties for immunotherapy},
author = {Vincent Flacher and Florian Sparber and Christoph H Tripp and Nikolaus Romani and Patrizia Stoitzner},
doi = {10.1007/s00262-008-0563-9},
issn = {1432-0851},
year = {2009},
date = {2009-07-01},
journal = {Cancer immunology, immunotherapy: CII},
volume = {58},
number = {7},
pages = {1137--1147},
abstract = {Langerhans cells, a subset of skin dendritic cells in the epidermis, survey peripheral tissue for invading pathogens. In recent functional studies it was proven that Langerhans cells can present exogenous antigen not merely on major histocompatibility complexes (MHC)-class II molecules to CD4+ T cells, but also on MHC-class I molecules to CD8+ T cells. Immune responses against topically applied antigen could be measured in skin-draining lymph nodes. Skin barrier disruption or co-application of adjuvants was required for maximal induction of T cell responses. Cytotoxic T cells induced by topically applied antigen inhibited tumor growth in vivo, thus underlining the potential of Langerhans cells for immunotherapy. Here we review recent work and report novel observations relating to the potential use of Langerhans cells for immunotherapy. We investigated the potential of epicutaneous immunization strategies in which resident skin dendritic cells are loaded with tumor antigen in situ. This contrasts with current clinical approaches, where dendritic cells generated from progenitors in blood are loaded with tumor antigen ex vivo before injection into cancer patients. In the current study, we applied either fluorescently labeled protein antigen or targeting antibodies against DEC-205/CD205 and langerin/CD207 topically onto barrier-disrupted skin and examined antigen capture and transport by Langerhans cells. Protein antigen could be detected in Langerhans cells in situ, and they were the main skin dendritic cell subset transporting antigen during emigration from skin explants. Potent in vivo proliferative responses of CD4+ and CD8+ T cells were measured after epicutaneous immunization with low amounts of protein antigen. Targeting antibodies were mainly transported by langerin+ migratory dendritic cells of which the majority represented migratory Langerhans cells and a smaller subset the new langerin+ dermal dendritic cell population located in the upper dermis. The preferential capture of topically applied antigen by Langerhans cells and their ability to induce potent CD4+ and CD8+ T cell responses emphasizes their potential for epicutaneous immunization strategies.},
keywords = {Active, Animals, Antibodies, antibody, Antigen, Antigens, BLOOD, C-Type, cancer, CD, CD4-Positive T-Lymphocytes, CD4+ T cells, CD8-Positive T-Lymphocytes, CD8+ T cells, Dendritic Cells, DERMATOLOGY, DERMIS, Epidermis, Growth, Human, Humans, immune response, IMMUNE-RESPONSES, Immunization, Immunology, Immunotherapy, in situ, In vivo, Inbred BALB C, Inbred C57BL, INDUCTION, Langerhans Cells, LECTIN, Lectins, LYMPH, LYMPH NODE, Lymph Nodes, Major Histocompatibility Complex, Mannose-Binding Lectins, metabolism, methods, MHC class I, MHC class I molecules, Mice, Neoplasm, Neoplasms, OVALBUMIN, Patients, PROGENITORS, Protein, Proteins, RESPONSES, review, Skin, T CELLS, T-CELLS, Team-Mueller, therapy, tumor},
pubstate = {published},
tppubtype = {article}
}