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ABSTRACT

The diverse functional roles of RNA are determined by its underlying structure. Accurate and comprehen-
sive knowledge of RNA structure would inform a broader understanding of RNA biology and facilitate
exploiting RNA as a biotechnological tool and therapeutic target. Determining the pattern of base pairing,
or secondary structure, of RNA is a first step in these endeavors. Advances in experimental, computa-
tional, and comparative analysis approaches for analyzing secondary structure have yielded accurate
structures for many small RNAs, but only a few large (>500 nts) RNAs. In addition, most current methods
for determining a secondary structure require considerable effort, analytical expertise, and technical
ingenuity. In this review, we outline an efficient strategy for developing accurate secondary structure
models for RNAs of arbitrary length. This approach melds structural information obtained using SHAPE
chemistry with structure prediction using nearest-neighbor rules and the dynamic programming algo-
rithm implemented in the RNAstructure program. Prediction accuracies reach >95% for RNAs on the kilo-
base scale. This approach facilitates both development of new models and refinement of existing RNA
structure models, which we illustrate using the Gag-Pol frameshift element in an HIV-1 M-group genome.
Most promisingly, integrated experimental and computational refinement brings closer the ultimate goal

of efficiently and accurately establishing the secondary structure for any RNA sequence.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

RNA is a uniquely versatile macromolecule with diverse func-
tions. In addition to its classically understood role as the interme-
diary between genome and proteome, RNA plays direct roles in
fundamental cellular processes including biological catalysis, gene
regulation and host defense. RNA also serves as the genome for
many viruses. All of these functions depend on, or are modulated
by, the ability of RNA to fold into higher order structures. Accurate
models for the underlying structure are therefore critical for pro-
posing and confirming hypotheses regarding RNA function.

Determining the complete three-dimensional (termed the ter-
tiary) structure is the ultimate goal for many RNAs. However, only
limited sets of RNAs are candidates for current high resolution
crystallography and NMR approaches. A simpler problem is to
determine the base pairing pattern (termed the secondary struc-
ture) of an RNA. Secondary structure determination, independent
of higher order structural information, is possible because the
hydrogen bonding and stacking interactions that collectively form
secondary structure are usually stronger than tertiary interactions
[1-4], and because RNA folding is often hierarchical [5,6], with
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many secondary structural motifs forming prior to tertiary con-
tacts. Additionally, knowledge of the secondary structure greatly
restricts possible three-dimensional conformations and facilitates
tertiary structure prediction [7-9]. Moreover, a subset of RNA func-
tions may depend more directly on secondary structural motifs
than on global folds.

Insight into the secondary structure can be gleaned using com-
puter-based predictions performed using the sequence alone, or in
combination with sequence alignment information or experimen-
tal data. Sequence-based folding generally includes two main ele-
ments: an energy function based on experimentally derived
thermodynamic parameters, and an algorithm that explores the
conformational space available to the RNA and ranks computed
structures. Most energy functions use the Turner et al. [10,11] set
of nearest-neighbor parameters, derived from optical melting
experiments. A summary of these parameters is available at the
Nearest-Neighbor Database [12]. Exploring conformational space
is challenging because of the vast number of possible secondary
structures, which is estimated to scale exponentially as ~1.8",
where N is the number of nucleotides in the RNA [13]. This means
that a “brute force” approach that samples every possible confor-
mation is impossible both from a computational standpoint and
from the perspective of efficient RNA folding in vivo. Consequently,
the intrinsic thermodynamics and kinetics of RNA folding must
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conspire to restrict the folding pathway to a narrow subset of these
structures, only one (or perhaps a few) of which is likely to domi-
nate the equilibrium ensemble. Especially for short RNAs, thermo-
dynamic considerations are likely paramount and thus the
structure with the lowest free energy is the biologically active one.

1.1. Dynamic programming algorithms for RNA secondary structure
prediction

Programs based on the Zuker dynamic programming algorithm
[14,15] are widely used to search for the minimum free energy
structure [16-22]. These algorithms are deterministic, meaning
that given a defined set of energy rules, they always find the lowest
free energy structure. The Zuker algorithm scales as O(N) in time,
where N is the number of nucleotides in the sequence. This means
that doubling the sequence length requires eight times as much
time to predict the structure. Nevertheless, on modern computers,
the time to make a prediction is reasonably fast. The guarantee that
the optimal structure can be computed and the relative computa-
tional efficiency are made possible, first, by incorporating simplify-
ing assumptions into the energy function, and second, by limiting
the types of allowed RNA folds.

The total energy is assumed to be a simple sum over all ener-
getic components that characterize local structural elements.
Two features primarily contribute to the total energy: negative
(favorable) free energies arising from stabilizing base stacking
and hydrogen bonding interactions in and adjacent to helices,
and positive (unfavorable) free energies arising from the entropic
cost of restricting conformational freedom in loops. Helix energy
terms are sequence-dependent, reflect the energetic bonus of add-
ing a base pair to a helix, and implicitly include both canonical
hydrogen bonding and base stacking. These terms depend solely
on interactions involving adjacent base pairs or interactions at
the ends of helices. This local interaction model is termed the near-
est-neighbor approximation [23].

The dynamic programming algorithm calculates the energy of
the lowest free energy structure (but does not compute the com-
plete structure itself) for all possible subsequences of an RNA. This
approach is efficient because the solution for each subsequence is
computed from solutions for pre-computed smaller subsequences,
allowing the energies for each structural element to be computed
only once. The results are stored in triangular N x N arrays whose
elements i, j represent the optimal folding energy for an RNA sub-
sequence from nucleotide i to nucleotide j. The structure for the en-
tire RNA sequence is obtained by tracing a structure through an
optimal combination of component subsequences in the array [24].

Thermodynamics-based dynamic programming algorithms
have several limitations. First, computing the minimum free en-
ergy structure in a relatively efficient O(N*) manner excludes con-
sideration of non-nested topologies. These include the biologically
important case of pseudoknots, in which a loop in one helix forms
the stem of another helix. Second, the assumption that the mini-
mum free energy structure is the biologically active one may not
always hold for larger RNAs, where folding kinetics may play a
prominent role. Third, the biologically relevant ensemble may be
dominated by several interconverting states, making a single struc-
tural model inadequate. Finally, incomplete thermodynamic rules
and the simplifications inherent in the nearest-neighbor model
introduce uncertainties to the energy calculations.

The net effect of these limitations is that the current best-per-
forming algorithms achieve prediction accuracies of 50-70%
[11,25-29]. Accuracies tend to be especially poor for larger RNAs.
For example, for Escherichia coli 16S rRNA, which is probably the
most thoroughly studied large RNA, the prediction accuracy based
on sequence alone is less than 50% [26,30].

1.2. Comparative sequence analysis

One way of overcoming these limitations is to use information
from RNA sequence alignments [31-33]. Termed comparative se-
quence or covariation analysis, this approach is grounded in the
principle that homologous RNAs have secondary structures that
are much more conserved than their primary sequences. An align-
ment of homologous RNAs is used to propose base pairing interac-
tions based on patterns of sequence variation, assuming a common
consensus secondary structure. Candidate base pairs are favored or
disfavored depending on whether sequence variations tend to
maintain base pairing or tend to occur independently, respectively.

A model with good covariation support commands strong con-
fidence in its accuracy and such models are often the gold standard
in the absence of crystallographic models. However, comparative
sequence analysis cannot be applied to many RNAs of interest be-
cause the method requires multiple divergent sequences with a
common secondary structure. The sequences must be similar
enough to admit a multiple sequence alignment, yet divergent
enough to permit sufficient analysis of variation. Sequences corre-
sponding to open reading frames are especially recalcitrant to anal-
ysis because selective pressure at the protein coding level further
restricts the degree of variation. Finally, constructing a model from
a sequence alignment is an iterative process that requires consid-
erable user effort and skill.

1.3. Incorporating experimental data

In cases where comparative analysis is of limited use, significant
improvements to RNA secondary structure prediction can be
achieved when computer predictions are constrained by experi-
mental data derived from structure-sensitive enzymatic cleavage
and chemical probing reagents [11,34,35]. However, the net
improvement gained from using traditional reagents is often mod-
est. First, traditional reagents tend to react with only a subset of
nucleotides, so the absence of reactivity cannot usually be taken
as evidence for likely base pairing. Second, different reagents are
required to react with all four RNA nucleotides and some of the
more useful reagents, like dimethyl sulfate (DMS), react at different
base functional groups depending on the nucleotide. Third, the dy-
namic range for many reagents is low, making it difficult to distin-
guish levels of reactivity beyond a qualitative “low,” “medium,”
and “high” scale. Finally, while alternative chemistries such as
in-line probing [36] and hydroxyl radical footprinting [37] provide
valuable insight into higher order structures and react broadly
with all four RNA nucleotides, they less directly report the intrinsic
nucleotide flexibilities that largely characterize secondary struc-
ture. Thus, it is challenging to create quantitative relationships be-
tween reagent reactivity and RNA secondary structure.

1.4. Towards accurate SHAPE-directed secondary structure prediction

Selective 2’-hydroxyl acylation analyzed by primer extension
(SHAPE) [38,39] chemical probing technology largely addresses
these challenges. SHAPE yields quantitative reactivity information
for nearly every nucleotide in an RNA. Advantageously, SHAPE is
not limited by RNA size and is remarkably insensitive to solvent
accessibility [38,40,41]. Additionally, SHAPE can be applied to both
in vitro transcripts and to RNAs from native-like cellular and viral
environments. Combining SHAPE information with a thermody-
namics-based dynamic programming algorithm, as implemented
in RNAstructure [11], results in highly accurate secondary struc-
ture models [30]. This approach has been benchmarked and shown
to yield secondary structures for diverse RNAs, including the E. coli
16S rRNA (1542 nucleotides), with >95% accuracy as judged by
sensitivity (percentage of known base pairs predicted correctly)
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and positive predictive value (PPV, percentage of predicted base
pairs in the known structure) [30] (Table 1). SHAPE has been used
to propose experimentally-informed secondary structural models
for many RNAs and RNA states whose structures are unlikely to
be amenable to covariation or high resolution experimental ap-
proaches [30,39,41-57]. In this work, we will briefly review the
SHAPE experimental protocol and data processing steps. We will
then describe in detail how SHAPE experimental information is
incorporated into a nearest-neighbor dynamic programming algo-
rithm to create accurate secondary structure models. We close
with an analysis of a novel SHAPE-supported model for the HIV-
1 frameshift element.

2. SHAPE experiment and data processing
2.1. Overview of SHAPE technology

SHAPE technology involves covalently modifying RNA in a
structure-dependent manner (selective 2’'-hydroxyl acylation), fol-
lowed by detecting the sites of modification by primer extension
(original protocols described in [58,59]). The RNA modification in-
volves the nucleophilic attack of the 2’-hydroxyl group of the RNA
ribose moiety on an electrophilic SHAPE reagent to form a 2’-0-ad-
duct (Fig. 1A) [38]. This reaction occurs more readily with conform-
ationally unconstrained or flexible nucleotides such as those in
single stranded regions, loops, or bulges (spheres, Fig. 1B). Flexible
nucleotides react preferentially because they more readily sample
conformations conducive to nucleophilic attack. In contrast, nucle-
otides in highly structured regions are conformationally con-
strained and less frequently achieve an optimal geometry,
making them less reactive towards SHAPE reagents. In general, sol-
vent inaccessible, but unconstrained, nucleotides are still reactive
by SHAPE.

Following modification of the RNA, modified positions are de-
tected by primer extension using end-labeled, target-specific prim-
ers and a thermostable reverse transcriptase (Fig. 1C). Since the
reverse transcriptase enzyme cannot proceed past 2’-O-modified
sites in RNA, the lengths of the resulting cDNA products corre-
spond to the distance between the primer binding and 2’-0-adduct
sites. Due to differential modification of structured versus unstruc-
tured nucleotides, the frequency of producing a given cDNA prod-
uct reflects the underlying RNA structure. Comparison with
dideoxy nucleotide sequencing ladders allows each SHAPE re-
agent-dependent peak to be matched with the corresponding
nucleotide position (Fig. 1D).

Table 1
RNA secondary structure prediction accuracies for folding calculations performed
without and with SHAPE constraints.

RNA Size No constraints With SHAPE
(nts)
Sensitivity PPV  Sensitivity PPV
Yeast tRNA"P 75 95 95 100 100
HCV IRES domain II 95 57 59 96 100
Bacillus subtilis RNase P, 154 53 51 75 83
specificity domain
bI3 group I intron, P546 155 43 44 96 98
domain
E. coli 16S rRNA 1542 50 46 97 95

Sensitivity and PPV are the percentage of known base pairs predicted correctly
and the percentage of predicted base pairs in the known structure, respectively.
Calculations were performed using RNAstructure [11]. Accuracies for SHAPE-
constrained structures are typically >95%. However, accuracy for the RNase P
specificity domain is significantly lower, likely because many base pairs in this
RNA only form in concert with the tertiary structure [62]. Data are from
Refs. [30,62].
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Fig. 1. Overview of the SHAPE experimental and data analysis steps. Adapted from
Ref. [60].

SHAPE technology can be implemented in an efficient and high-
throughput way by automated capillary electrophoresis using DNA
sequencing instruments (Fig. 1E). The capillary electrophoresis
data are analyzed using the software program ShapeFinder [60].
ShapeFinder processes these data to yield normalized SHAPE reac-
tivity values (Fig. 1F). These reactivities can be converted to
AGsuape pseudo-free energy terms and used with the energy
function in the RNAstructure program to yield, generally highly
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accurate, secondary structure models for RNA (Table 1, and see
Section 3.1 below) [11,30].

2.2. SHAPE experimental protocol

The experimental component of a SHAPE analysis has been re-
cently reviewed in detail [59,61]. Briefly, RNA is modified in a
structure-selective way using an electrophilic SHAPE reagent.
While SHAPE has been most commonly performed on in vitro
RNA transcripts or RNAs extracted from biological environments,
SHAPE reagents readily cross biological membranes and, for exam-
ple, react with RNAs inside authentic HIV-1 particles [39].

Approximately 2 pmol of RNA is needed in each primer exten-
sion reaction to obtain adequate signal intensity in the capillary
electrophoresis detection step, using commercially available
instruments. We routinely achieve read lengths of 300-650 nucle-
otides in each primer extension reaction [50,60]. For longer RNAs,
information obtained from multiple primers, with overlapping
read windows, can be combined to create datasets spanning arbi-
trarily long lengths [30,39,41].

To maintain a native-like conformation, the RNA must be rena-
tured (in vitro transcripts) or maintained (RNAs from cellular or
viral sources) in a physiological-like folding buffer. We typically
use a simple standard solution [50 mM HEPES (pH 8.0), 200 mM
potassium acetate (pH 8.0), 3-5mM MgCl,], and incubate at
37 °C for 10-30 min prior to modification. SHAPE works well under
a wide variety of conditions, including in the presence of biological
amines and carbohydrates and proteins that bind RNA. The main
requirement for SHAPE is that the pH be maintained in the 7.6-
8.3 range [38].

RNA structure is interrogated by adding a SHAPE reagent. Initial
work in our laboratory used the commercially available NMIA re-
agent [58]; more recent work has utilized the faster-reacting

1M7 reagent, whose synthesis is described in [62]. The SHAPE re-
agent is dissolved in DMSO and added to the RNA solution to a final
concentration of about 5 mM. The optimal reagent concentration
varies and can be system-specific: too high a concentration of
SHAPE reagent results in significant signal decay and reduced read
lengths, while too low a concentration yields data with a poor sig-
nal. Background signals in the primer extension reaction are mea-
sured by performing a no-reagent control in which DMSO is added
in place of the SHAPE reagent, in an otherwise identical reaction.
Both reactions should be incubated at 37 °C for either 35 min if
using NMIA or 70 s if using 1M7. Both reagents self-quench by
reacting with water in the aqueous solution.

Following an ethanol precipitation step, fluorescently-labeled
primers are annealed to the (+) and (—) reagent-treated RNA and
to untreated RNAs (the latter are used for sequencing). A thermo-
stable reverse transcriptase enzyme is used for the primer exten-
sion reactions to convert the structural information into cDNA
libraries. We perform the separation step in a single capillary by
employing 3-4 different dyes for the (+) reagent, (—) reagent,
and dideoxy sequencing ladder(s) [39,59]. The dyes are chosen to
have similar electrophoretic mobilities, which simplifies the align-
ment of the electropherograms during the data processing steps.
The cDNA products are recovered by ethanol precipitation, resus-
pended in formamide, and resolved on a commercial capillary elec-
trophoresis DNA sequencing instrument.

2.3. Data analysis to create normalized SHAPE reactivities

The ShapeFinder software has been described in detail [60] and
is freely available for download, with tutorials [63]. Here we briefly
outline the steps required to convert capillary electrophoresis elec-
tropherograms into quantitative reactivity measurements (Fig. 2).

Required Files Procedure Output
ShapeFinder o Raw sequencer e Open sequencer data files in o . txt peaks file
Data Processing data files. ShapeFinder and save as a

Supported formats . shape folder

include . txt; e Adjust baseline

Beckman .esd, e Correct signal decay

.dat; ABI . fsa, e Perform mobility shift

.abi, .abl * Scale (+) and (-) peaks

. seq primary e Align peaks to RNA sequence

L]

sequence file

Integrate peak areas

File
Preparation

. txt peaks file

Select normalization method
Create .shape SHAPE file
Identify no-data points; set
reactivities to -999

.shape SHAPE file

RNAstructure .shape SHAPE file | ¢ Choose input sequence file and | e .ct connectivity file
Folding . seqg primary output . ct file
sequence file e Choose SHAPE file
e Choose pseudo-free energy m
and b parameters
e Choose maximum pairing
distance for long RNAs
Model .ct connectivity file | e Draw .ctfile o .txt helix file

Visualization

.shape SHAPE file

Color by SHAPE reactivity

For long RNAs, export helix file
to specialized RNA
visualization program

Fig. 2. Overview of the steps involved in processing capillary electrophoresis data, obtaining normalized SHAPE reactivities, and calculating experimentally-informed RNA
secondary structure models [11,30,39,60].
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The raw sequencer data file is opened in ShapeFinder and saved
as a .shape folder. The first step is to correct baselines using the
Fitted Baseline Adjust tool. Second, fluorescence intensity de-
cays exponentially with increasing cDNA length due to incomplete
processivity of the reverse transcriptase enzyme during primer
extension [44,60]. This is corrected using the Signal Decay Cor-
rection tool. Third, the Mobility Shift tool is used to align (+)
reagent, (—) reagent, and dideoxy sequencing traces, since the dif-
ferent fluorescent dyes introduce small offsets in the raw electro-
pherogram in their respective labeled cDNA fragments. Mobility
shifts are performed manually using the s1iding traces function
in ShapeFinder. Fourth, the (+) and (—) reagent traces are scaled to
each other to account for differences in signal intensity between
the dyes. In general, the lowest (+) reagent peaks, corresponding
to low or no SHAPE reactivity, should be scaled to overlap with
their corresponding (—) reagent peaks. Finally, the Align and
Integrate tool is used to align all peaks with the known primary
sequence (supplied as a .seq text file), to make minor adjustments
in peak alignments, and to integrate all peaks in the (+) and (-) re-
agent traces. When the calculation is complete, a text file called the
peaks file is generated (Fig. 2). This file contains information about
each nucleotide, including integrated (+) and (—) reagent peak
areas (labeled RX and BG, respectively) and their subtracted, nor-
malized SHAPE reactivities.

3. SHAPE-constrained RNAstructure folding
3.1. Theory

A major challenging endeavor in RNA biology is to consistently
and efficiently develop correct secondary structure models for
RNAs of arbitrary length and complexity. The thermodynamics-
based computational methods outlined above (Section 1.1) are
highly useful for rapid computation of candidate structural models.
However, prediction accuracies are inconsistent for many RNAs
and tend to be particularly poor for large RNAs. These limitations
can be broadly attributed to simplifications inherent in the near-
est-neighbor model and incomplete knowledge of RNA energetics.
However, for many RNAs, it is possible to obtain robust secondary
structure predictions by incorporating SHAPE reactivities into the
energy function used in a nearest-neighbor dynamic programming
algorithm. This approach has been implemented in the RNAstruc-
ture program [64].

The RNAstructure energy function is modified by adding
pseudo-free energy change terms derived from SHAPE reactivi-
ties. This approach is grounded in the observation that SHAPE
reactivities correlate strongly with local nucleotide flexibility
[38,40] and, thus, also with the probability that a nucleotide is
single stranded. The NMIA and 1M7 SHAPE reagents react with
all four RNA nucleotides similarly [65]. It is therefore possible
to create a softer, continuous, and more physically grounded re-
straint function than is typically used with conventional chemi-
cal mapping reagents that exhibit strong idiosyncratic and
nucleotide-specific reactivities. In essence, these additional ener-
getic terms provide a knowledge-based correction to the nearest-
neighbor energy function.

We derive a pseudo-free energy change term for each base-
paired residue i from its SHAPE reactivity:

AGspape (i) = m In[SHAPE reactivity(i) + 1] + b (1)

The empirical parameters m and b serve to scale the strength of the
experimental contribution to the energy function. The intercept b
represents the pseudo-free energy contribution of a base-paired
nucleotide whose SHAPE reactivity is zero. The sign of b is negative
to reflect an energetic bonus for base pairing by constrained nucle-

otides. In contrast, the slope m represents the strength of the ener-
getic penalty assigned for pairing nucleotides with high SHAPE
reactivities and consequently has a positive sign.

Optimal values for m and b were determined by assessing the
prediction accuracy for E. coli 23S rRNA over a range of slope and
intercept values [30]. This work identified m = 2.6 kcal/mol and
b =-0.8 kcal/mol as optimal values for folding large ribosomal
RNAs and, importantly, also established these values as being lo-
cated at the center of a “sweet spot” of a broad set of m and b val-
ues that yields accurate SHAPE-directed structure predictions [30]
(emphasized in red, Fig. 3). Given the large size (2904 nts) of the
E. coli 23S rRNA and the diversity of structural motifs it contains,
these parameter values are also likely to work well for other RNAs.
We empirically find this to be the case, although slightly different
parameter values, still in the sweet spot (Fig. 3), can be chosen heu-
ristically to refine predictions for some RNAs [41]. The logarithmic
relationship between SHAPE reactivities and the derived AGsyape
term has the effect of forgiving differences among the most highly
reactive nucleotides. The usefulness of this behavior reflects the
observation that highly reactive nucleotides are the most sensitive
to signal processing artifacts and have the highest variance. Fur-
thermore, the logarithmic relationship between SHAPE reactivity
and pseudo-free energy change loosely reflects a statistical
mechanical interpretation of SHAPE reactivity, which indirectly
measures the number of conformational states accessible to each
nucleotide.

We illustrate the combined nearest-neighbor and SHAPE energy
function, as implemented in RNAstructure, for a short fragment of
an HIV-1 RNA sequence (Fig. 4). Nucleotides are color-coded by
their SHAPE reactivities as reported in [41]. The energy function
[12] includes favorable nearest-neighbor energy terms for helix
stacking (in green, Fig. 4) and entropic penalties for anchoring
loops (in red, Fig. 4). Stacking terms are added for all helical inter-
actions, including terminal mismatches and dangling ends at helix
termini, as well as for coaxial stacking between adjacent helices
[25,66]. Stacking terms depend on the sequence identity of all
nucleotides participating in the stack (the nearest-neighbors),
while loop entropy terms depend primarily on the number of
nucleotides in the loop.

In contrast to the nearest-neighbor thermodynamics-based en-
ergy parameters, pseudo-free energy terms (AGsyapg) are calcu-
lated for each nucleotide individually (Fig. 4, black and gray
numbers). Nucleotides with high SHAPE reactivities have positive
pseudo-free energies and those with low SHAPE reactivities have
negative pseudo-free energies (Eq. (1)). AGsyape terms are only
added to the free energy calculation for base-paired nucleotides
(Fig. 4, black numbers). AGsyape terms for nucleotides at the ends
of helices are counted once and those in the interior of helices
are counted twice since they contribute to two stacks (Fig. 4, blue
1x and 2x symbols, respectively). Base-paired nucleotides with
high SHAPE reactivities contribute large positive pseudo-free ener-
gies (for example, see the red G in Fig. 4). Such nucleotides are
more likely to be allowed at the end, as opposed to the interior,
of a helix because they are added to the total free energy only once.
This is consistent with the observation that nucleotides at the ends
of helices are more dynamic, and experience greater fraying, than
interior nucleotides. On the other hand, unpaired nucleotides with
low SHAPE reactivities represent an incomplete model and could
suggest non-canonical interactions that are not currently predicted
by the algorithm (for example, see the tandem black G residues in
the apical loop of Fig. 4). The total folding energy (AGiotal) is sSimply
the sum of all nearest-neighbor thermodynamic terms (AGyy) and
pseudo-free energy (AGsuape) contributions (Fig. 4). This sum is
used to rank RNA structures and should not be interpreted as a
physical energy because it includes both thermodynamic terms
and SHAPE-derived pseudo-free energy change terms.
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3.2. SHAPE-constrained RNAstructure folding: Procedure

The final output of ShapeFinder peak integration is a tab-delim-
ited text file termed the peaks file (Fig. 2, top). Columns in the file
include integrated peak areas for the (+) and (—) reagent traces,
their subtracted areas, and SHAPE reactivities.

3.2.1. Normalization

SHAPE reactivities are normalized to a uniform scale that is va-
lid for diverse RNAs. Some RNAs are highly structured, with rela-
tively few unconstrained nucleotides, while other RNAs contain
large flexible loop regions. In developing a normalization proce-
dure, we make the fundamental assumption that all RNAs will have
at least a few unreactive and also a few highly reactive positions,
corresponding to strongly constrained and highly dynamic nucleo-
tides, respectively. Experience in our laboratory has found that sec-
ondary structure calculations are tolerant of variation in the
absolute normalization scale, and instead depend primarily on
the relative differences in SHAPE reactivities.

A normalized reactivity of 1.0 is defined as the average intensity
of the top 10% most reactive peaks, excluding a few highly reactive
nucleotides taken to be outliers. We use two distinct approaches to
identify outlier peaks, the choice of which varies depending on the
system under study. In the simple normalization scheme, the most
reactive 2% of all intensities are removed from the pool. The inten-
sities of the next 8% most reactive peaks are averaged and all reac-
tivities are divided by this average value. This heuristic rule is
based on general experience in our laboratory.

In the box-plot normalization scheme, peaks greater than 1.5
times the interquartile range (numerical distance between the
25th and 75th percentiles) above the 75th percentile are removed.
This definition of outliers is consistent with common practice in
model-free statistics [67]. After excluding these outliers, the next
10% of intensities are averaged and all reactivities, including
outliers, are divided by this value. Generally, we suggest using
the box-plot method if the sequence is long enough for meaningful

statistics to be calculated (typically >300 reactivity measure-
ments). Advanced users may opt to calculate their own normalized
SHAPE reactivities if a particular experiment has a large number of
very reactive peaks. The net result of normalization is to place all
reactivities on a scale spanning 0 to ~1.5, where 0 indicates no
reactivity (and a highly constrained nucleotide) and reactivities
>0.7 typically indicate highly flexible nucleotides. Both simple
and box-plot normalized SHAPE reactivities are reported in the
peaks file.

3.2.2. Maximum pairing distance in large RNAs

For large RNAs, we typically disallow base pairing between
nucleotides greater than 600 positions distant from each other in
the primary sequence. More than 99% of all known ribosomal
RNA pairings span fewer than 600 nucleotides and applying this
restriction increases prediction accuracy for the 16S and 23S rRNAs
[30]. Applying this constraint is also attractive from the perspec-
tive of RNA folding kinetics, since RNA folding likely occurs co-
transcriptionally, and nucleotides located very far from each other
are unlikely to have the opportunity to base pair. This constraint
thus represents a very approximate approach for accounting for
RNA folding kinetics, which are otherwise ignored in the folding
algorithm.

3.2.3. File preparation

SHAPE-constrained RNA secondary structure calculations using
the RNAstructure program require two input text files: (1) a se-
quence file with a .seq extension that contains the primary se-
quence and (2) a SHAPE reactivity file with a .shape extension
(Fig. 2). The sequence file format has at least one comment line,
each preceded by a semicolon, followed by a one-line title, fol-
lowed by the RNA sequence. The numeral one signals the end of
the sequence. The sequence should be entered in uppercase; low-
ercase letters may be included and indicate nucleotides that the
user specifically wishes to prohibit from base pairing (an alterna-
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Fig. 4. Summary of thermodynamic and SHAPE-derived free energy change
contributions for a simple HIV-1 hairpin (NL4-3 nucleotides 594-626) [41].
Favorable nearest-neighbor stacking and unfavorable loop thermodynamic terms
are shown in green and red, respectively. The total nearest-neighbor free energy
change AGyy is the sum over all these contributions. AGsyape pseudo-free energy
change terms are shown for base-paired (black) and non-base-paired (gray)
nucleotides; only base-paired values are included in the net free energy change.
The AGsyape term is added once for each nucleotide at the ends of helices and twice
for interior nucleotides (blue symbols). The AGsyapg calculations used m = 3.0 kcal/
mol and b = —0.6 kcal/mol. The total folding free energy change, AGoar, is the sum
of nearest-neighbor and SHAPE-derived contributions.

tive method using the .shape file is also described below). Any T’s
present in the sequence are interpreted as U’s.

The user creates a .shape file as a text file containing two col-
umns: the numerical nucleotide position and the SHAPE reactivity
for that position. It is important to differentiate positions where
the measured reactivity is zero from positions where no data
was obtained or SHAPE reactivities could not be determined. The
measurement of zero is a critical one and indicates that a position
is highly structured. If the reagent and background traces were
properly scaled in the ShapeFinder analysis step, there should be
no, or very few, negative SHAPE reactivity values. Negative peaks
are treated as having a SHAPE reactivity of zero.

SHAPE reactivities for a few nucleotides typically need to be ex-
cluded from the folding calculation. These no-data positions in-
clude nucleotides with high background in the no-reagent
control and difficult-to-resolve peaks either near the 3’ primer
annealing site or at the 5’ end of the trace. For such positions,
one of two methods is used to signal to the RNAstructure program
to use only thermodynamic parameters when calculating energies
involving these nucleotides. The row containing the nucleotide
number and its reactivity can be deleted from the .shape file or
the SHAPE reactivity can be replaced with a value <-500. We typ-

ically use the latter approach and set uncertain nucleotides to
—999. For a carefully performed experiment, only a small number
of positions typically need to be excluded. For example, out of
>9000 nucleotides in the NL4-3 HIV-1 genome, only 53 nucleotides
needed to be excluded from the AGsyape pseudo-free energy calcu-
lation. Finally, known single stranded regions or those that interact
with another RNA or protein can be prohibited from forming base
pairs by assigning these nucleotides a high SHAPE reactivity value
(by convention, we set these to 100). This was important, for exam-
ple, in folding calculations for an HIV-1 genome at positions that
form intermolecular base pairs with the tRNA primer [41].

3.2.4. RNAstructure folding

After preparing the sequence and SHAPE text files, the user is
ready to initiate folding in RNAstructure via RNA/fold RNA sin-
gle strand, then selecting the input sequence and output connec-
tivity files (.ct file, Fig. 2). The sequence can also be input by hand
via File/New Sequence. For large RNAs, we usually restrict base
pair distances to less than 600 nucleotides via Force/Maximum
Pairing Distance. SHAPE data are then read via Force/Read
SHAPE Reactivity—Pseudo-Energy Constraint at which
point the slope (m) and intercept (b) (Eq. (1)) are chosen. Optimal
values of m = 2.6 kcal/mol and b = —0.8 kcal/mol were obtained by
optimizing structural predictions for 23S rRNA, but there is a range
of values that yield high prediction accuracies (Fig. 3) [30]. We
empirically find that different weights within this range may be
optimal for other RNAs. For example, in our current HIV-1 work,
we use values of m = 3.0 kcal/mol and b = —0.6 kcal/mol [41]. The
user accepts the SHAPE file and initiates the folding calculation
by selecting START.

3.2.5. Model visualization

The completed calculation generates a .ct file and the user is
prompted with the option of drawing the resulting secondary
structures. Viewing perspectives are manipulated under the Draw
tab in RNAstructure. The structure can be colored by SHAPE reac-
tivity via Draw/Add SHAPE annotation and choosing the appro-
priate .shape file. Nucleotides are colored using the following
convention [30]: SHAPE reactivities <0.3 are black; those >0.7,
red; those in between, orange; and those without SHAPE data, gray
(Fig. 4).

An RNA secondary structure model is consistent with the input
SHAPE reactivities if double stranded regions are generally black
and single stranded nucleotides red or orange. While the viewer
in RNAstructure is useful for analyzing predicted structures, for
presentation quality images and large RNAs, we recommend
exporting the structures as helix text files (Draw/Export Struc-
ture to Text File) that can be read by viewing software such as
XRNA [68]. The .ct file displays the total folding energy corre-
sponding to the sum of both thermodynamic and SHAPE-derived
pseudo-free energy change contributions (see Fig. 4). The folding
energy that corresponds solely to the sum of thermodynamic
terms can be obtained by running RNA/Efn2 RNA on the .ct file.

4. Example: A SHAPE-supported model for the HIV-1 Gag-Pol
frameshift element

We conclude this review with an example from HIV-1 biology
describing how SHAPE-constrained RNAstructure calculations can
be used to propose new structural models for RNA domains. The
human immunodeficiency virus maximizes coding efficiency
through the use of overlapping reading frames in its RNA genome.
The gene coding for Pol, the polyprotein precursor for viral en-
zymes, does not have its own start codon but, instead, is encoded
in an open reading frame that is offset by —1 nucleotide relative
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to the upstream Gag reading frame. In order to translate Pol, the
ribosome initially translates Gag before pausing, backing up 1
nucleotide, and proceeding to translate the pol reading frame
[69]. This process is called frameshifting and occurs at a conserved
heptanucleotide UUUUUUA “slippery” sequence with a frequency
of approximately 5-10% [70,71]. The precise level of frameshifting
is crucial for viral replication and the ratio of Gag to Gag-Pol poly-
protein products appears to be tightly regulated [72]. The HIV-1
frameshift element is thus an intriguing target for antiretroviral
drug development [71,73].

The Gag-Pol frameshift element has traditionally been drawn as
consisting of a single stranded slippery sequence followed by a
downstream stimulatory element consisting of a 12 base pair hair-
pin structure (Fig. 5A). This stem-loop RNA structural element
functions to enhance ribosomal pausing and to increase the fre-
quency of frameshifting [74]. However, comparisons with ribo-
somal frameshift structures from other retroviruses and
experimental evidence that this classical stem-loop is necessary,
but not sufficient, for frameshifting [75,76] have motivated alter-
native proposals for this element. These alternative structures in-
clude pseudoknots [77-79] and a two-stem model (Fig. 5B) [80].
The two-stem model was confirmed by NMR studies performed
on 41 and 45 nucleotide transcripts containing precisely this re-
gion [81,82].

However, SHAPE probing of the full-length HIV-1 RNA genome,
as extracted from authentic viruses, suggests yet another, more

complex, structure (Fig. 5C) [41]. Most strikingly, nucleotides in
the slippery sequence (blue boxes, Fig. 5) have mostly low SHAPE
reactivities. These experimental measurements indicate that the
slippery sequence is base-paired (or otherwise constrained) rather
than being single stranded in the intact genome as isolated from
viruses. Furthermore, when SHAPE reactivities are used to direct
RNAstructure folding calculations of the entire intact genome,
analysis of the frameshift region in its global context suggests that
this functional element is one part of a much larger, 140-nucleo-
tide long, structural unit (Fig. 5C). Further work will clearly be
needed to discriminate among these models and to determine
whether the frameshift element might adopt multiple conforma-
tions during HIV-1 replication. However, this example illustrates
the ability of SHAPE-constrained folding to identify elements of
current models that may be incomplete and to facilitate develop-
ment of new RNA structure models in the context of their global,
native-like, sequence and structural environments.

5. Conclusions

The SHAPE-constrained RNA folding approach outlined here
provides a straightforward way of proposing, validating, and refin-
ing accurate secondary structure models for nearly any RNA. Cur-
rent limitations in the SHAPE approach remain active research
focuses, including the requirement for pmol-scale amounts of
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RNA, which can be difficult to obtain in some cases, and the inabil-
ity to directly predict pseudoknots and other tertiary interactions.
SHAPE-constrained RNA folding is particularly valuable for the
large universe of functionally important RNAs for which there is
little evolutionary data and for which high resolution structure
determination is unrealizable. In addition, the ability to probe
RNA structures in cellular and viral environments or in native-like
extracted forms can provide biological insights that are not obtain-
able using simplified in vitro models. Continued development of
SHAPE reagents and of algorithms for using experimental informa-
tion to constrain RNA structure prediction will expand the classes
of RNA motifs and structure-function relationships that can be
understood at a molecular level.
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