Camara Abdouramane, Cordeiro Olga G, Alloush Farouk, Sponsel Janina, Chypre Mélanie, Onder Lucas, Asano Kenichi, Tanaka Masato, Yagita Hideo, Ludewig Burkhard, Flacher Vincent, Mueller Christopher G
Lymph Node Mesenchymal and Endothelial Stromal Cells Cooperate via the RANK-RANKL Cytokine Axis to Shape the Sinusoidal Macrophage Niche Article de journal
Dans: Immunity, vol. 50, non 6, p. 1467–1481.e6, 2019, ISSN: 1097-4180.
Résumé | Liens | BibTeX | Étiquettes: Activation, Animals, Biomarkers, Cell Differentiation, Cells, Cellular, Cellular Microenvironment, cytokine, Cytokines, deficiency, Differentiation, Endothelial Cells, ENDOTHELIAL-CELLS, environment, Expression, immune regulation, Immunology, Immunophenotyping, inflammation, LYMPH, LYMPH NODE, Lymph Nodes, lymphatic endothelial cells, Lymphoid Tissue, Macrophage, Macrophages, Mesenchymal Stem Cells, mesenchymal stromal cells, Mice, rank, RANK ligand, Receptor Activator of Nuclear Factor-kappa B, Regulation, Signal Transduction, Stromal Cells, Team-Mueller, transgenic
@article{camara_lymph_2019,
title = {Lymph Node Mesenchymal and Endothelial Stromal Cells Cooperate via the RANK-RANKL Cytokine Axis to Shape the Sinusoidal Macrophage Niche},
author = {Abdouramane Camara and Olga G Cordeiro and Farouk Alloush and Janina Sponsel and Mélanie Chypre and Lucas Onder and Kenichi Asano and Masato Tanaka and Hideo Yagita and Burkhard Ludewig and Vincent Flacher and Christopher G Mueller},
doi = {10.1016/j.immuni.2019.05.008},
issn = {1097-4180},
year = {2019},
date = {2019-01-01},
journal = {Immunity},
volume = {50},
number = {6},
pages = {1467--1481.e6},
abstract = {Tissue-resident macrophages are receptive to specific signals concentrated in cellular niches that direct their cell differentiation and maintenance genetic programs. Here, we found that deficiency of the cytokine RANKL in lymphoid tissue organizers and marginal reticular stromal cells of lymph nodes resulted in the loss of the CD169+ sinusoidal macrophages (SMs) comprising the subcapsular and the medullary subtypes. Subcapsular SM differentiation was impaired in mice with targeted RANK deficiency in SMs. Temporally controlled RANK removal in lymphatic endothelial cells (LECs) revealed that lymphatic RANK activation during embryogenesis and shortly after birth was required for the differentiation of both SM subtypes. Moreover, RANK expression by LECs was necessary for SM restoration after inflammation-induced cell loss. Thus, cooperation between mesenchymal cells and LECs shapes a niche environment that supports SM differentiation and reconstitution after inflammation.},
keywords = {Activation, Animals, Biomarkers, Cell Differentiation, Cells, Cellular, Cellular Microenvironment, cytokine, Cytokines, deficiency, Differentiation, Endothelial Cells, ENDOTHELIAL-CELLS, environment, Expression, immune regulation, Immunology, Immunophenotyping, inflammation, LYMPH, LYMPH NODE, Lymph Nodes, lymphatic endothelial cells, Lymphoid Tissue, Macrophage, Macrophages, Mesenchymal Stem Cells, mesenchymal stromal cells, Mice, rank, RANK ligand, Receptor Activator of Nuclear Factor-kappa B, Regulation, Signal Transduction, Stromal Cells, Team-Mueller, transgenic},
pubstate = {published},
tppubtype = {article}
}
Coz Carole Le, Joublin Aurélie, Pasquali Jean-Louis, Korganow Anne-Sophie, Dumortier Hélène, Monneaux Fanny
Circulating TFH subset distribution is strongly affected in lupus patients with an active disease Article de journal
Dans: PloS One, vol. 8, non 9, p. e75319, 2013, ISSN: 1932-6203.
Résumé | Liens | BibTeX | Étiquettes: Adult, Aged, B-Lymphocytes, Case-Control Studies, CD4 Lymphocyte Count, CD5 Antigens, CXCR5, Cytokines, Dumortier, Female, Flow Cytometry, Helper-Inducer, Humans, I2CT, Immunoglobulin E, Immunologic Memory, Immunophenotyping, Interleukin-21, Lupus Erythematosus, Male, Middle Aged, Monneaux, Phenotype, Receptors, Systemic, T-Lymphocytes, Team-Dumortier, Th2 Cells, Young Adult
@article{le_coz_circulating_2013,
title = {Circulating TFH subset distribution is strongly affected in lupus patients with an active disease},
author = {Carole Le Coz and Aurélie Joublin and Jean-Louis Pasquali and Anne-Sophie Korganow and Hélène Dumortier and Fanny Monneaux},
doi = {10.1371/journal.pone.0075319},
issn = {1932-6203},
year = {2013},
date = {2013-01-01},
journal = {PloS One},
volume = {8},
number = {9},
pages = {e75319},
abstract = {Follicular helper T cells (TFH) represent a distinct subset of CD4(+) T cells specialized in providing help to B lymphocytes, which may play a central role in autoimmune diseases having a major B cell component such as systemic lupus erythematosus. Recently, TFH subsets that share common phenotypic and functional characteristics with TFH cells from germinal centers, have been described in the peripheral blood from healthy individuals. The aim of this study was to analyze the distribution of such populations in lupus patients. Circulating TFH cell subsets were defined by multicolor flow cytometry as TFH17 (CXCR3(-)CCR6(+)), TFH1 (CXCR3 (+) CCR6(-)) or TFH2 (CXCR3(-)CCR6(-)) cells among CXCR5 (+) CD45RA(-)CD4(+) T cells in the peripheral blood of 23 SLE patients and 23 sex and age-matched healthy controls. IL-21 receptor expression by B cells was analyzed by flow cytometry and the serum levels of IL-21 and Igs were determined by ELISA tests. We found that the TFH2 cell subset frequency is strongly and significantly increased in lupus patients with an active disease (SLEDAI scoretextgreater8), while the TFH1 cell subset percentage is greatly decreased. The TFH2 and TFH1 cell subset frequency alteration is associated with the presence of high Ig levels and autoantibodies in patient's sera. Moreover, the TFH2 cell subset enhancement correlates with an increased frequency of double negative memory B cells (CD27(-)IgD(-)CD19(+) cells) expressing the IL-21R. Finally, we found that IgE levels in lupus patients' sera correlate with disease activity and seem to be associated with high TFH2 cell subset frequency. In conclusion, our study describes for the first time the distribution of circulating TFH cell subsets in lupus patients. Interestingly, we found an increased frequency of TFH2 cells, which correlates with disease activity. Our results suggest that this subset might play a key role in lupus pathogenesis.},
keywords = {Adult, Aged, B-Lymphocytes, Case-Control Studies, CD4 Lymphocyte Count, CD5 Antigens, CXCR5, Cytokines, Dumortier, Female, Flow Cytometry, Helper-Inducer, Humans, I2CT, Immunoglobulin E, Immunologic Memory, Immunophenotyping, Interleukin-21, Lupus Erythematosus, Male, Middle Aged, Monneaux, Phenotype, Receptors, Systemic, T-Lymphocytes, Team-Dumortier, Th2 Cells, Young Adult},
pubstate = {published},
tppubtype = {article}
}
Flacher Vincent, Douillard Patrice, Aït-Yahia Smina, Stoitzner Patrizia, Clair-Moninot Valérie, Romani Nikolaus, Saeland Sem
Expression of langerin/CD207 reveals dendritic cell heterogeneity between inbred mouse strains Article de journal
Dans: Immunology, vol. 123, non 3, p. 339–347, 2008, ISSN: 1365-2567.
Résumé | Liens | BibTeX | Étiquettes: Animals, Antigen, Antigens, C-Type, CD, Cell Surface, Dendritic Cells, DERMATOLOGY, Epidermis, Expression, Immunology, Immunophenotyping, Inbred Strains, inflammation, Langerhans Cells, LECTIN, Lectins, LYMPH, LYMPH NODE, Lymph Nodes, Lymphoid Tissue, Mannose-Binding Lectins, Maturation, metabolism, Mice, Minor Histocompatibility Antigens, mouse, Phenotype, Protein, Receptor, Receptors, Species Specificity, SPLEEN, SUBSETS, Surface, Team-Mueller
@article{flacher_expression_2008,
title = {Expression of langerin/CD207 reveals dendritic cell heterogeneity between inbred mouse strains},
author = {Vincent Flacher and Patrice Douillard and Smina Aït-Yahia and Patrizia Stoitzner and Valérie Clair-Moninot and Nikolaus Romani and Sem Saeland},
doi = {10.1111/j.1365-2567.2007.02785.x},
issn = {1365-2567},
year = {2008},
date = {2008-03-01},
journal = {Immunology},
volume = {123},
number = {3},
pages = {339--347},
abstract = {Langerin/CD207 is expressed by a subset of dendritic cells (DC), the epithelial Langerhans cells. However, langerin is also detected among lymphoid tissue DC. Here, we describe striking differences in langerin-expressing cells between inbred mouse strains. While langerin+ cells are observed in comparable numbers and with comparable phenotypes in the epidermis, two distinct DC subsets bear langerin in peripheral, skin-draining lymph nodes of BALB/c mice (CD11c(high) CD8alpha(high) and CD11c(low) CD8alpha(low)), whereas only the latter subset is present in C57BL/6 mice. The CD11c(high) subset is detected in mesenteric lymph nodes and spleen of BALB/c mice, but is virtually absent from C57BL/6 mice. Similar differences are observed in other mouse strains. CD11c(low) langerin+ cells represent skin-derived Langerhans cells, as demonstrated by their high expression of DEC-205/CD205, maturation markers, and recruitment to skin-draining lymph nodes upon imiquimod-induced inflammation. It will be of interest to determine the role of lymphoid tissue-resident compared to skin-derived langerin+ DC.},
keywords = {Animals, Antigen, Antigens, C-Type, CD, Cell Surface, Dendritic Cells, DERMATOLOGY, Epidermis, Expression, Immunology, Immunophenotyping, Inbred Strains, inflammation, Langerhans Cells, LECTIN, Lectins, LYMPH, LYMPH NODE, Lymph Nodes, Lymphoid Tissue, Mannose-Binding Lectins, Maturation, metabolism, Mice, Minor Histocompatibility Antigens, mouse, Phenotype, Protein, Receptor, Receptors, Species Specificity, SPLEEN, SUBSETS, Surface, Team-Mueller},
pubstate = {published},
tppubtype = {article}
}