Nehmar Ramzi, Alsaleh Ghada, Voisin Benjamin, Flacher Vincent, Mariotte Alexandre, Saferding Victoria, Puchner Antonia, Niederreiter Birgit, Vandamme Thierry, Schabbauer Gernot, Kastner Philippe, Chan Susan, Kirstetter Peggy, Holcmann Martin, Mueller Christopher, Sibilia Jean, Bahram Seiamak, Blüml Stephan, Georgel Philippe
Therapeutic Modulation of Plasmacytoid Dendritic Cells in Experimental Arthritis Article de journal
Dans: Arthritis & Rheumatology (Hoboken, N.J.), vol. 69, non 11, p. 2124–2135, 2017, ISSN: 2326-5205.
Résumé | Liens | BibTeX | Étiquettes: Activation, Adjuvants, Aminoquinolines, Analysis, Animal, Animals, arthritis, Assay, cancer, Cells, cytokine, Cytokines, Dendritic Cells, DEPLETION, Disease Models, drug effects, Enzyme-Linked Immunosorbent Assay, Experimental, Flow Cytometry, Gene Expression Profiling, Genetics, GLYCOPROTEIN, Glycoproteins, Human, Humans, IFN, IKAROS, Ikaros Transcription Factor, imiquimod, Immunologic, Immunology, immunopathology, inflammation, interferon, Interferon Type I, interferons, Knockout, Membrane, Membrane Glycoproteins, METHOD, methods, Mice, MODULATION, mouse, Necrosis, NECROSIS-FACTOR-ALPHA, pathogenesis, Patients, Pharmacology, physiology, plasmacytoid dendritic cells, Protein, Receptor, Reverse Transcriptase Polymerase Chain Reaction, rheumatoid, rheumatoid arthritis, Serum, signaling, Team-Mueller, TLR7, Toll-Like Receptor 7, TOPICAL APPLICATION, Transcription, TRANSCRIPTION FACTOR, transcriptome, transgenic, tumor, Tumor Necrosis Factor, Tumor Necrosis Factor-alpha
@article{nehmar_therapeutic_2017,
title = {Therapeutic Modulation of Plasmacytoid Dendritic Cells in Experimental Arthritis},
author = {Ramzi Nehmar and Ghada Alsaleh and Benjamin Voisin and Vincent Flacher and Alexandre Mariotte and Victoria Saferding and Antonia Puchner and Birgit Niederreiter and Thierry Vandamme and Gernot Schabbauer and Philippe Kastner and Susan Chan and Peggy Kirstetter and Martin Holcmann and Christopher Mueller and Jean Sibilia and Seiamak Bahram and Stephan Blüml and Philippe Georgel},
doi = {10.1002/art.40225},
issn = {2326-5205},
year = {2017},
date = {2017-01-01},
journal = {Arthritis & Rheumatology (Hoboken, N.J.)},
volume = {69},
number = {11},
pages = {2124--2135},
abstract = {OBJECTIVE: The role of plasmacytoid dendritic cells (PDCs) and type I interferons (IFNs) in rheumatoid arthritis (RA) remains a subject of controversy. This study was undertaken to explore the contribution of PDCs and type I IFNs to RA pathogenesis using various animal models of PDC depletion and to monitor the effect of localized PDC recruitment and activation on joint inflammation and bone damage.
METHODS: Mice with K/BxN serum-induced arthritis, collagen-induced arthritis, and human tumor necrosis factor transgene insertion were studied. Symptoms were evaluated by visual scoring, quantification of paw swelling, determination of cytokine levels by enzyme-linked immunosorbent assay, and histologic analysis. Imiquimod-dependent therapeutic effects were monitored by transcriptome analysis (using quantitative reverse transcriptase-polymerase chain reaction) and flow cytometric analysis of the periarticular tissue.
RESULTS: PDC-deficient mice showed exacerbation of inflammatory and arthritis symptoms after arthritogenic serum transfer. In contrast, enhancing PDC recruitment and activation to arthritic joints by topical application of the Toll-like receptor 7 (TLR-7) agonist imiquimod significantly ameliorated arthritis in various mouse models. Imiquimod induced an IFN signature and led to reduced infiltration of inflammatory cells.
CONCLUSION: The therapeutic effects of imiquimod on joint inflammation and bone destruction are dependent on TLR-7 sensing by PDCs and type I IFN signaling. Our findings indicate that local recruitment and activation of PDCs represents an attractive therapeutic opportunity for RA patients.},
keywords = {Activation, Adjuvants, Aminoquinolines, Analysis, Animal, Animals, arthritis, Assay, cancer, Cells, cytokine, Cytokines, Dendritic Cells, DEPLETION, Disease Models, drug effects, Enzyme-Linked Immunosorbent Assay, Experimental, Flow Cytometry, Gene Expression Profiling, Genetics, GLYCOPROTEIN, Glycoproteins, Human, Humans, IFN, IKAROS, Ikaros Transcription Factor, imiquimod, Immunologic, Immunology, immunopathology, inflammation, interferon, Interferon Type I, interferons, Knockout, Membrane, Membrane Glycoproteins, METHOD, methods, Mice, MODULATION, mouse, Necrosis, NECROSIS-FACTOR-ALPHA, pathogenesis, Patients, Pharmacology, physiology, plasmacytoid dendritic cells, Protein, Receptor, Reverse Transcriptase Polymerase Chain Reaction, rheumatoid, rheumatoid arthritis, Serum, signaling, Team-Mueller, TLR7, Toll-Like Receptor 7, TOPICAL APPLICATION, Transcription, TRANSCRIPTION FACTOR, transcriptome, transgenic, tumor, Tumor Necrosis Factor, Tumor Necrosis Factor-alpha},
pubstate = {published},
tppubtype = {article}
}
Kwan Wing-Hong, Navarro-Sanchez Erika, Dumortier Hélène, Decossas Marion, Vachon Hortense, dos Santos Flavia Barreto, Fridman Hervé W, Rey Félix A, Harris Eva, Despres Philippe, Mueller Christopher G
Dermal-type macrophages expressing CD209/DC-SIGN show inherent resistance to dengue virus growth Article de journal
Dans: PLoS neglected tropical diseases, vol. 2, non 10, p. e311, 2008, ISSN: 1935-2735.
Résumé | Liens | BibTeX | Étiquettes: Adhesion, adhesion molecules, C-Type, Cell Adhesion, Cell Adhesion Molecules, Cell Line, Cell Surface, Cells, Chemistry, Cultured, Dendritic Cells, Dengue, Dengue virus, Gene Expression, Genetics, GLYCOPROTEIN, Growth, growth & development, Humans, ICAM-3, IFN ALPHA, IL-10, IL10, IMMATURE, Immunology, in situ, infection, LECTIN, Lectins, Macrophage, Macrophages, metabolism, METHOD, methods, monocyte, Monocytes, myeloid dendritic cells, pathogenesis, Phagosomes, PRODUCTION, Protein, Protein Binding, Proteins, Receptor, Receptors, Resistance, Skin, Team-Mueller, Viral Envelope Proteins, virology, virus
@article{kwan_dermal-type_2008b,
title = {Dermal-type macrophages expressing CD209/DC-SIGN show inherent resistance to dengue virus growth},
author = {Wing-Hong Kwan and Erika Navarro-Sanchez and Hélène Dumortier and Marion Decossas and Hortense Vachon and Flavia Barreto dos Santos and Hervé W Fridman and Félix A Rey and Eva Harris and Philippe Despres and Christopher G Mueller},
doi = {10.1371/journal.pntd.0000311},
issn = {1935-2735},
year = {2008},
date = {2008-10-01},
journal = {PLoS neglected tropical diseases},
volume = {2},
number = {10},
pages = {e311},
abstract = {BACKGROUND: An important question in dengue pathogenesis is the identity of immune cells involved in the control of dengue virus infection at the site of the mosquito bite. There is evidence that infection of immature myeloid dendritic cells plays a crucial role in dengue pathogenesis and that the interaction of the viral envelope E glycoprotein with CD209/DC-SIGN is a key element for their productive infection. Dermal macrophages express CD209, yet little is known about their role in dengue virus infection.
METHODS AND FINDINGS: Here, we showed that dermal macrophages bound recombinant envelope E glycoprotein fused to green fluorescent protein. Because dermal macrophages stain for IL-10 in situ, we generated dermal-type macrophages from monocytes in the presence of IL-10 to study their infection by dengue virus. The macrophages were able to internalize the virus, but progeny virus production was undetectable in the infected cells. In addition, no IFN-alpha was produced in response to the virus. The inability of dengue virus to grow in the macrophages was attributable to accumulation of internalized virus particles into poorly-acidified phagosomes.
CONCLUSIONS: Aborting infection by viral sequestration in early phagosomes would present a novel means to curb infection of enveloped virus and may constitute a prime defense system to prevent dengue virus spread shortly after the bite of the infected mosquito.},
keywords = {Adhesion, adhesion molecules, C-Type, Cell Adhesion, Cell Adhesion Molecules, Cell Line, Cell Surface, Cells, Chemistry, Cultured, Dendritic Cells, Dengue, Dengue virus, Gene Expression, Genetics, GLYCOPROTEIN, Growth, growth & development, Humans, ICAM-3, IFN ALPHA, IL-10, IL10, IMMATURE, Immunology, in situ, infection, LECTIN, Lectins, Macrophage, Macrophages, metabolism, METHOD, methods, monocyte, Monocytes, myeloid dendritic cells, pathogenesis, Phagosomes, PRODUCTION, Protein, Protein Binding, Proteins, Receptor, Receptors, Resistance, Skin, Team-Mueller, Viral Envelope Proteins, virology, virus},
pubstate = {published},
tppubtype = {article}
}