Cronin Shane J F, Nehme Nadine T, Limmer Stefanie, Liegeois Samuel, Pospisilik Andrew J, Schramek Daniel, Leibbrandt Andreas, de Simoes Ricardo Matos, Gruber Susanne, Puc Urszula, Ebersberger Ingo, Zoranovic Tamara, Neely Gregory G, von Haeseler Arndt, Ferrandon Dominique, Penninger Josef M
Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection Article de journal
Dans: Science, vol. 325, non 5938, p. 340–343, 2009, ISSN: 1095-9203.
Résumé | Liens | BibTeX | Étiquettes: *Genome, *RNA Interference, Animal, Animals, Cell Proliferation, Drosophila melanogaster/*genetics/immunology/*microbiology, Drosophila Proteins/genetics/metabolism, Epithelial Cells, Epithelial Cells/cytology/physiology, ferrandon, Genetically Modified, Genome, Hemocytes, Hemocytes/immunology/metabolism/microbiology, Homeostasis, Immunity, Innate, Innate/*genetics, Insect, Intestinal Mucosa, Intestinal Mucosa/cytology/immunology/metabolism/microbiology, Janus Kinases, Janus Kinases/genetics/metabolism, M3i, Models, RNA Interference, Serratia Infections, Serratia Infections/genetics/*immunology/microbiology, Serratia marcescens, Serratia marcescens/*immunology/physiology, Signal Transduction, STAT Transcription Factors, STAT Transcription Factors/genetics/metabolism, Stem Cells, Stem Cells/cytology/physiology
@article{cronin_genome-wide_2009b,
title = {Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection},
author = {Shane J F Cronin and Nadine T Nehme and Stefanie Limmer and Samuel Liegeois and Andrew J Pospisilik and Daniel Schramek and Andreas Leibbrandt and Ricardo Matos de Simoes and Susanne Gruber and Urszula Puc and Ingo Ebersberger and Tamara Zoranovic and Gregory G Neely and Arndt von Haeseler and Dominique Ferrandon and Josef M Penninger},
doi = {10.1126/science.1173164},
issn = {1095-9203},
year = {2009},
date = {2009-01-01},
journal = {Science},
volume = {325},
number = {5938},
pages = {340--343},
abstract = {Innate immunity represents the first line of defense in animals. We report a genome-wide in vivo Drosophila RNA interference screen to uncover genes involved in susceptibility or resistance to intestinal infection with the bacterium Serratia marcescens. We first employed whole-organism gene suppression, followed by tissue-specific silencing in gut epithelium or hemocytes to identify several hundred genes involved in intestinal antibacterial immunity. Among the pathways identified, we showed that the JAK-STAT signaling pathway controls host defense in the gut by regulating stem cell proliferation and thus epithelial cell homeostasis. Therefore, we revealed multiple genes involved in antibacterial defense and the regulation of innate immunity.},
keywords = {*Genome, *RNA Interference, Animal, Animals, Cell Proliferation, Drosophila melanogaster/*genetics/immunology/*microbiology, Drosophila Proteins/genetics/metabolism, Epithelial Cells, Epithelial Cells/cytology/physiology, ferrandon, Genetically Modified, Genome, Hemocytes, Hemocytes/immunology/metabolism/microbiology, Homeostasis, Immunity, Innate, Innate/*genetics, Insect, Intestinal Mucosa, Intestinal Mucosa/cytology/immunology/metabolism/microbiology, Janus Kinases, Janus Kinases/genetics/metabolism, M3i, Models, RNA Interference, Serratia Infections, Serratia Infections/genetics/*immunology/microbiology, Serratia marcescens, Serratia marcescens/*immunology/physiology, Signal Transduction, STAT Transcription Factors, STAT Transcription Factors/genetics/metabolism, Stem Cells, Stem Cells/cytology/physiology},
pubstate = {published},
tppubtype = {article}
}