Publications
2017
Nehmar Ramzi, Alsaleh Ghada, Voisin Benjamin, Flacher Vincent, Mariotte Alexandre, Saferding Victoria, Puchner Antonia, Niederreiter Birgit, Vandamme Thierry, Schabbauer Gernot, Kastner Philippe, Chan Susan, Kirstetter Peggy, Holcmann Martin, Mueller Christopher, Sibilia Jean, Bahram Seiamak, Blüml Stephan, Georgel Philippe
Therapeutic Modulation of Plasmacytoid Dendritic Cells in Experimental Arthritis Article de journal
Dans: Arthritis & Rheumatology (Hoboken, N.J.), vol. 69, non 11, p. 2124–2135, 2017, ISSN: 2326-5205.
Résumé | Liens | BibTeX | Étiquettes: Activation, Adjuvants, Aminoquinolines, Analysis, Animal, Animals, arthritis, Assay, cancer, Cells, cytokine, Cytokines, Dendritic Cells, DEPLETION, Disease Models, drug effects, Enzyme-Linked Immunosorbent Assay, Experimental, Flow Cytometry, Gene Expression Profiling, Genetics, GLYCOPROTEIN, Glycoproteins, Human, Humans, IFN, IKAROS, Ikaros Transcription Factor, imiquimod, Immunologic, Immunology, immunopathology, inflammation, interferon, Interferon Type I, interferons, Knockout, Membrane, Membrane Glycoproteins, METHOD, methods, Mice, MODULATION, mouse, Necrosis, NECROSIS-FACTOR-ALPHA, pathogenesis, Patients, Pharmacology, physiology, plasmacytoid dendritic cells, Protein, Receptor, Reverse Transcriptase Polymerase Chain Reaction, rheumatoid, rheumatoid arthritis, Serum, signaling, Team-Mueller, TLR7, Toll-Like Receptor 7, TOPICAL APPLICATION, Transcription, TRANSCRIPTION FACTOR, transcriptome, transgenic, tumor, Tumor Necrosis Factor, Tumor Necrosis Factor-alpha
@article{nehmar_therapeutic_2017,
title = {Therapeutic Modulation of Plasmacytoid Dendritic Cells in Experimental Arthritis},
author = {Ramzi Nehmar and Ghada Alsaleh and Benjamin Voisin and Vincent Flacher and Alexandre Mariotte and Victoria Saferding and Antonia Puchner and Birgit Niederreiter and Thierry Vandamme and Gernot Schabbauer and Philippe Kastner and Susan Chan and Peggy Kirstetter and Martin Holcmann and Christopher Mueller and Jean Sibilia and Seiamak Bahram and Stephan Blüml and Philippe Georgel},
doi = {10.1002/art.40225},
issn = {2326-5205},
year = {2017},
date = {2017-01-01},
journal = {Arthritis & Rheumatology (Hoboken, N.J.)},
volume = {69},
number = {11},
pages = {2124--2135},
abstract = {OBJECTIVE: The role of plasmacytoid dendritic cells (PDCs) and type I interferons (IFNs) in rheumatoid arthritis (RA) remains a subject of controversy. This study was undertaken to explore the contribution of PDCs and type I IFNs to RA pathogenesis using various animal models of PDC depletion and to monitor the effect of localized PDC recruitment and activation on joint inflammation and bone damage.
METHODS: Mice with K/BxN serum-induced arthritis, collagen-induced arthritis, and human tumor necrosis factor transgene insertion were studied. Symptoms were evaluated by visual scoring, quantification of paw swelling, determination of cytokine levels by enzyme-linked immunosorbent assay, and histologic analysis. Imiquimod-dependent therapeutic effects were monitored by transcriptome analysis (using quantitative reverse transcriptase-polymerase chain reaction) and flow cytometric analysis of the periarticular tissue.
RESULTS: PDC-deficient mice showed exacerbation of inflammatory and arthritis symptoms after arthritogenic serum transfer. In contrast, enhancing PDC recruitment and activation to arthritic joints by topical application of the Toll-like receptor 7 (TLR-7) agonist imiquimod significantly ameliorated arthritis in various mouse models. Imiquimod induced an IFN signature and led to reduced infiltration of inflammatory cells.
CONCLUSION: The therapeutic effects of imiquimod on joint inflammation and bone destruction are dependent on TLR-7 sensing by PDCs and type I IFN signaling. Our findings indicate that local recruitment and activation of PDCs represents an attractive therapeutic opportunity for RA patients.},
keywords = {Activation, Adjuvants, Aminoquinolines, Analysis, Animal, Animals, arthritis, Assay, cancer, Cells, cytokine, Cytokines, Dendritic Cells, DEPLETION, Disease Models, drug effects, Enzyme-Linked Immunosorbent Assay, Experimental, Flow Cytometry, Gene Expression Profiling, Genetics, GLYCOPROTEIN, Glycoproteins, Human, Humans, IFN, IKAROS, Ikaros Transcription Factor, imiquimod, Immunologic, Immunology, immunopathology, inflammation, interferon, Interferon Type I, interferons, Knockout, Membrane, Membrane Glycoproteins, METHOD, methods, Mice, MODULATION, mouse, Necrosis, NECROSIS-FACTOR-ALPHA, pathogenesis, Patients, Pharmacology, physiology, plasmacytoid dendritic cells, Protein, Receptor, Reverse Transcriptase Polymerase Chain Reaction, rheumatoid, rheumatoid arthritis, Serum, signaling, Team-Mueller, TLR7, Toll-Like Receptor 7, TOPICAL APPLICATION, Transcription, TRANSCRIPTION FACTOR, transcriptome, transgenic, tumor, Tumor Necrosis Factor, Tumor Necrosis Factor-alpha},
pubstate = {published},
tppubtype = {article}
}
METHODS: Mice with K/BxN serum-induced arthritis, collagen-induced arthritis, and human tumor necrosis factor transgene insertion were studied. Symptoms were evaluated by visual scoring, quantification of paw swelling, determination of cytokine levels by enzyme-linked immunosorbent assay, and histologic analysis. Imiquimod-dependent therapeutic effects were monitored by transcriptome analysis (using quantitative reverse transcriptase-polymerase chain reaction) and flow cytometric analysis of the periarticular tissue.
RESULTS: PDC-deficient mice showed exacerbation of inflammatory and arthritis symptoms after arthritogenic serum transfer. In contrast, enhancing PDC recruitment and activation to arthritic joints by topical application of the Toll-like receptor 7 (TLR-7) agonist imiquimod significantly ameliorated arthritis in various mouse models. Imiquimod induced an IFN signature and led to reduced infiltration of inflammatory cells.
CONCLUSION: The therapeutic effects of imiquimod on joint inflammation and bone destruction are dependent on TLR-7 sensing by PDCs and type I IFN signaling. Our findings indicate that local recruitment and activation of PDCs represents an attractive therapeutic opportunity for RA patients.
2009
Flacher Vincent, Sparber Florian, Tripp Christoph H, Romani Nikolaus, Stoitzner Patrizia
Targeting of epidermal Langerhans cells with antigenic proteins: attempts to harness their properties for immunotherapy Article de journal
Dans: Cancer immunology, immunotherapy: CII, vol. 58, non 7, p. 1137–1147, 2009, ISSN: 1432-0851.
Résumé | Liens | BibTeX | Étiquettes: Active, Animals, Antibodies, antibody, Antigen, Antigens, BLOOD, C-Type, cancer, CD, CD4-Positive T-Lymphocytes, CD4+ T cells, CD8-Positive T-Lymphocytes, CD8+ T cells, Dendritic Cells, DERMATOLOGY, DERMIS, Epidermis, Growth, Human, Humans, immune response, IMMUNE-RESPONSES, Immunization, Immunology, Immunotherapy, in situ, In vivo, Inbred BALB C, Inbred C57BL, INDUCTION, Langerhans Cells, LECTIN, Lectins, LYMPH, LYMPH NODE, Lymph Nodes, Major Histocompatibility Complex, Mannose-Binding Lectins, metabolism, methods, MHC class I, MHC class I molecules, Mice, Neoplasm, Neoplasms, OVALBUMIN, Patients, PROGENITORS, Protein, Proteins, RESPONSES, review, Skin, T CELLS, T-CELLS, Team-Mueller, therapy, tumor
@article{flacher_targeting_2009,
title = {Targeting of epidermal Langerhans cells with antigenic proteins: attempts to harness their properties for immunotherapy},
author = {Vincent Flacher and Florian Sparber and Christoph H Tripp and Nikolaus Romani and Patrizia Stoitzner},
doi = {10.1007/s00262-008-0563-9},
issn = {1432-0851},
year = {2009},
date = {2009-07-01},
journal = {Cancer immunology, immunotherapy: CII},
volume = {58},
number = {7},
pages = {1137--1147},
abstract = {Langerhans cells, a subset of skin dendritic cells in the epidermis, survey peripheral tissue for invading pathogens. In recent functional studies it was proven that Langerhans cells can present exogenous antigen not merely on major histocompatibility complexes (MHC)-class II molecules to CD4+ T cells, but also on MHC-class I molecules to CD8+ T cells. Immune responses against topically applied antigen could be measured in skin-draining lymph nodes. Skin barrier disruption or co-application of adjuvants was required for maximal induction of T cell responses. Cytotoxic T cells induced by topically applied antigen inhibited tumor growth in vivo, thus underlining the potential of Langerhans cells for immunotherapy. Here we review recent work and report novel observations relating to the potential use of Langerhans cells for immunotherapy. We investigated the potential of epicutaneous immunization strategies in which resident skin dendritic cells are loaded with tumor antigen in situ. This contrasts with current clinical approaches, where dendritic cells generated from progenitors in blood are loaded with tumor antigen ex vivo before injection into cancer patients. In the current study, we applied either fluorescently labeled protein antigen or targeting antibodies against DEC-205/CD205 and langerin/CD207 topically onto barrier-disrupted skin and examined antigen capture and transport by Langerhans cells. Protein antigen could be detected in Langerhans cells in situ, and they were the main skin dendritic cell subset transporting antigen during emigration from skin explants. Potent in vivo proliferative responses of CD4+ and CD8+ T cells were measured after epicutaneous immunization with low amounts of protein antigen. Targeting antibodies were mainly transported by langerin+ migratory dendritic cells of which the majority represented migratory Langerhans cells and a smaller subset the new langerin+ dermal dendritic cell population located in the upper dermis. The preferential capture of topically applied antigen by Langerhans cells and their ability to induce potent CD4+ and CD8+ T cell responses emphasizes their potential for epicutaneous immunization strategies.},
keywords = {Active, Animals, Antibodies, antibody, Antigen, Antigens, BLOOD, C-Type, cancer, CD, CD4-Positive T-Lymphocytes, CD4+ T cells, CD8-Positive T-Lymphocytes, CD8+ T cells, Dendritic Cells, DERMATOLOGY, DERMIS, Epidermis, Growth, Human, Humans, immune response, IMMUNE-RESPONSES, Immunization, Immunology, Immunotherapy, in situ, In vivo, Inbred BALB C, Inbred C57BL, INDUCTION, Langerhans Cells, LECTIN, Lectins, LYMPH, LYMPH NODE, Lymph Nodes, Major Histocompatibility Complex, Mannose-Binding Lectins, metabolism, methods, MHC class I, MHC class I molecules, Mice, Neoplasm, Neoplasms, OVALBUMIN, Patients, PROGENITORS, Protein, Proteins, RESPONSES, review, Skin, T CELLS, T-CELLS, Team-Mueller, therapy, tumor},
pubstate = {published},
tppubtype = {article}
}