Publications
2000
Wilhelm M., Boutabout M., Wilhelm F. X.
Expression of an active form of recombinant Ty1 reverse transcriptase in Escherichia coli: a fusion protein containing the C-terminal region of the Ty1 integrase linked to the reverse transcriptase-RNase H domain exhibits polymerase and RNase H activities Article de journal
Dans: Biochem J, vol. 348, non Pt 2, p. 337-42, 2000, (0264-6021 Journal Article).
Résumé | BibTeX | Étiquettes: &, Acid, affinity, Alignment, Amino, Calf, cerevisiae/*enzymology/*genetics, Chromatography, Cloning, Codon, coli, Comparative, Data, DNA, DNA/metabolism, Escherichia, Frames, Fusion, Genetic, Gov't, H, Heteroduplexes/metabolism, HIV-1, Homology, Integrases/chemistry/metabolism, Kinetics, Molecular, Non-U.S., Nucleic, Open, Polymerase/chemistry/isolation, Proteins/chemistry/isolation, purification/*metabolism, purification/metabolism, Reading, Recombinant, Retroelements/*genetics, Reverse, Ribonuclease, RNA-Directed, RNA/metabolism, Saccharomyces, Sequence, Study, Support, Templates, Terminator, Thymus/isolation, Transcriptase/chemistry
@article{,
title = {Expression of an active form of recombinant Ty1 reverse transcriptase in Escherichia coli: a fusion protein containing the C-terminal region of the Ty1 integrase linked to the reverse transcriptase-RNase H domain exhibits polymerase and RNase H activities},
author = { M. Wilhelm and M. Boutabout and F. X. Wilhelm},
year = {2000},
date = {2000-01-01},
journal = {Biochem J},
volume = {348},
number = {Pt 2},
pages = {337-42},
abstract = {Replication of the Saccharomyces cerevisiae Ty1 retrotransposon requires a reverse transcriptase capable of synthesizing Ty1 DNA. The first description of an active form of a recombinant Ty1 enzyme with polymerase and RNase H activities is reported here. The Ty1 enzyme was expressed as a hexahistidine-tagged fusion protein in Escherichia coli to facilitate purification of the recombinant protein by metal-chelate chromatography. Catalytic activity of the recombinant protein was detected only when amino acid residues encoded by the integrase gene were added to the N-terminus of the reverse transcriptase-RNase H domain. This suggests that the integrase domain could play a role in proper folding of reverse transcriptase. Several biochemical properties of the Ty1 enzyme were analysed, including the effect of MgCl(2), NaCl, temperature and of the chain terminator dideoxy GTP on its polymerase activity. RNase H activity was examined by monitoring the cleavage of a RNA-DNA template-primer. Our results suggest that the distance between the RNase H and polymerase active sites corresponds to the length of a 14-nucleotide RNA-DNA heteroduplex. The recombinant protein produced in E. coli should be useful for further biochemical and structural analyses and for a better understanding of the role of integrase in the activation of reverse transcriptase.},
note = {0264-6021
Journal Article},
keywords = {&, Acid, affinity, Alignment, Amino, Calf, cerevisiae/*enzymology/*genetics, Chromatography, Cloning, Codon, coli, Comparative, Data, DNA, DNA/metabolism, Escherichia, Frames, Fusion, Genetic, Gov't, H, Heteroduplexes/metabolism, HIV-1, Homology, Integrases/chemistry/metabolism, Kinetics, Molecular, Non-U.S., Nucleic, Open, Polymerase/chemistry/isolation, Proteins/chemistry/isolation, purification/*metabolism, purification/metabolism, Reading, Recombinant, Retroelements/*genetics, Reverse, Ribonuclease, RNA-Directed, RNA/metabolism, Saccharomyces, Sequence, Study, Support, Templates, Terminator, Thymus/isolation, Transcriptase/chemistry},
pubstate = {published},
tppubtype = {article}
}
1994
Moine H., Dahlberg A. E.
Mutations in helix 34 of Escherichia coli 16 S ribosomal RNA have multiple effects on ribosome function and synthesis Article de journal
Dans: J Mol Biol, vol. 243, non 3, p. 402-12, 1994, (0022-2836 Journal Article).
Résumé | BibTeX | Étiquettes: *Mutation, *Nucleic, *Translation, &, 16S/*chemistry/genetics, Acid, Base, beta-Galactosidase/genetics, Codon, coli/*genetics/growth, Conformation, Data, development, Escherichia, Genetic, Gov't, Molecular, Non-U.S., P.H.S., Ribosomal, Ribosomes/*metabolism, RNA, Sequence, Support, Terminator, U.S.
@article{,
title = {Mutations in helix 34 of Escherichia coli 16 S ribosomal RNA have multiple effects on ribosome function and synthesis},
author = { H. Moine and A. E. Dahlberg},
year = {1994},
date = {1994-01-01},
journal = {J Mol Biol},
volume = {243},
number = {3},
pages = {402-12},
abstract = {Helix 34 of E. coli 16 S rRNA (1046 to 1067 and 1189 to 1211) has been proposed to participate directly in the termination of translation at UGA stop codons. We have constructed mutations in this helix in plasmid-encoded rDNA to explore the specific functional roles of the sequence UCAUCA (1199 to 1204) and a secondary structure also involving positions 1054 and 1057-1058. The rRNA mutations were analyzed for their effects on in vivo translational accuracy (stop codon readthrough and frameshifting) as well as growth rate, ribosome synthesis and incorporation into polysomes. Mutations at positions 1054, 1057, 1058, 1199 and 1200 had significant effects on translational accuracy, causing non-specific readthrough of all three stop codons as well as enhanced +1 and -1 frameshifting. Mutations at 1202 and 1203, however, had no effect. The incorporation of deleterious mutant subunits into 70 S ribosomes and polysomes was severely reduced and was associated with a slower growth rate and increased synthesis of host-encoded ribosomes. These data support the proposal that helix 34 is an essential component of the decoding center of the 30 S ribosomal subunit and is not restricted in function to UGA-codon specific termination.},
note = {0022-2836
Journal Article},
keywords = {*Mutation, *Nucleic, *Translation, &, 16S/*chemistry/genetics, Acid, Base, beta-Galactosidase/genetics, Codon, coli/*genetics/growth, Conformation, Data, development, Escherichia, Genetic, Gov't, Molecular, Non-U.S., P.H.S., Ribosomal, Ribosomes/*metabolism, RNA, Sequence, Support, Terminator, U.S.},
pubstate = {published},
tppubtype = {article}
}