Roetzer Andreas, Gregori Christa, Jennings Ann Marie, Quintin Jessica, Ferrandon Dominique, Butler Geraldine, Kuchler Karl, Ammerer Gustav, Schüller Christoph
Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors Article de journal
Dans: Mol. Microbiol., vol. 69, no. 3, p. 603–620, 2008, ISSN: 1365-2958.
Résumé | Liens | BibTeX | Étiquettes: Animals, Candida glabrata, Candidiasis, DNA-Binding Proteins, ferrandon, Fungal, Fungal Proteins, Gene Expression Profiling, Gene Expression Regulation, Genetic, Humans, M3i, Oligonucleotide Array Sequence Analysis, Osmotic Pressure, Regulon, Saccharomyces cerevisiae Proteins, Transcription, Transcription Factors, Virulence, Yeasts
@article{roetzer_candida_2008b,
title = {Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors},
author = {Andreas Roetzer and Christa Gregori and Ann Marie Jennings and Jessica Quintin and Dominique Ferrandon and Geraldine Butler and Karl Kuchler and Gustav Ammerer and Christoph Schüller},
doi = {10.1111/j.1365-2958.2008.06301.x},
issn = {1365-2958},
year = {2008},
date = {2008-01-01},
journal = {Mol. Microbiol.},
volume = {69},
number = {3},
pages = {603--620},
abstract = {We determined the genome-wide environmental stress response (ESR) expression profile of Candida glabrata, a human pathogen related to Saccharomyces cerevisiae. Despite different habitats, C. glabrata, S. cerevisiae, Schizosaccharomyces pombe and Candida albicans have a qualitatively similar ESR. We investigate the function of the C. glabrata syntenic orthologues to the ESR transcription factor Msn2. The C. glabrata orthologues CgMsn2 and CgMsn4 contain a motif previously referred to as HD1 (homology domain 1) also present in Msn2 orthologues from fungi closely related to S. cerevisiae. We show that regions including this motif confer stress-regulated intracellular localization when expressed in S. cerevisiae. Site-directed mutagenesis confirms that nuclear export of CgMsn2 in C. glabrata requires an intact HD1. Transcript profiles of CgMsn2/4 mutants and CgMsn2 overexpression strains show that they regulate a part of the CgESR. CgMsn2 complements a S. cerevisiae msn2 null mutant and in stressed C. glabrata cells, rapidly translocates from the cytosol to the nucleus. CgMsn2 is required for full resistance against severe osmotic stress and rapid and full induction of trehalose synthesis genes (TPS1, TPS2). Constitutive activation of CgMsn2 is detrimental for C. glabrata. These results establish an Msn2-regulated general stress response in C. glabrata.},
keywords = {Animals, Candida glabrata, Candidiasis, DNA-Binding Proteins, ferrandon, Fungal, Fungal Proteins, Gene Expression Profiling, Gene Expression Regulation, Genetic, Humans, M3i, Oligonucleotide Array Sequence Analysis, Osmotic Pressure, Regulon, Saccharomyces cerevisiae Proteins, Transcription, Transcription Factors, Virulence, Yeasts},
pubstate = {published},
tppubtype = {article}
}
Dostert Catherine, Jouanguy Emmanuelle, Irving Phil, Troxler Laurent, Galiana-Arnoux Delphine, Hetru Charles, Hoffmann Jules A, Imler Jean-Luc
The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila Article de journal
Dans: Nature Immunology, vol. 6, no. 9, p. 946–953, 2005, ISSN: 1529-2908.
Résumé | Liens | BibTeX | Étiquettes: Animals, bioinformatic, DNA-Binding Proteins, Genetic, Genetically Modified, hoffmann, imler, Insect Viruses, Janus Kinase 1, M3i, Male, Oligonucleotide Array Sequence Analysis, Promoter Regions, Protein-Tyrosine Kinases, Signal Transduction, STAT1 Transcription Factor, Trans-Activators
@article{dostert_jak-stat_2005,
title = {The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila},
author = {Catherine Dostert and Emmanuelle Jouanguy and Phil Irving and Laurent Troxler and Delphine Galiana-Arnoux and Charles Hetru and Jules A Hoffmann and Jean-Luc Imler},
doi = {10.1038/ni1237},
issn = {1529-2908},
year = {2005},
date = {2005-01-01},
journal = {Nature Immunology},
volume = {6},
number = {9},
pages = {946--953},
abstract = {The response of drosophila to bacterial and fungal infections involves two signaling pathways, Toll and Imd, which both activate members of the transcription factor NF-kappaB family. Here we have studied the global transcriptional response of flies to infection with drosophila C virus. Viral infection induced a set of genes distinct from those regulated by the Toll or Imd pathways and triggered a signal transducer and activator of transcription (STAT) DNA-binding activity. Genetic experiments showed that the Jak kinase Hopscotch was involved in the control of the viral load in infected flies and was required but not sufficient for the induction of some virus-regulated genes. Our results indicate that in addition to Toll and Imd, a third, evolutionary conserved innate immunity pathway functions in drosophila and counters viral infection.},
keywords = {Animals, bioinformatic, DNA-Binding Proteins, Genetic, Genetically Modified, hoffmann, imler, Insect Viruses, Janus Kinase 1, M3i, Male, Oligonucleotide Array Sequence Analysis, Promoter Regions, Protein-Tyrosine Kinases, Signal Transduction, STAT1 Transcription Factor, Trans-Activators},
pubstate = {published},
tppubtype = {article}
}
Irving Phil, Troxler Laurent, Heuer Timothy S, Belvin Marcia, Kopczynski Casey, Reichhart Jean-Marc, Hoffmann Jules A, Hetru Charles
A genome-wide analysis of immune responses in Drosophila Article de journal
Dans: Proc. Natl. Acad. Sci. U.S.A., vol. 98, no. 26, p. 15119–15124, 2001, ISSN: 0027-8424.
Résumé | Liens | BibTeX | Étiquettes: Animals, bioinformatic, Gene Expression Regulation, Genome, Gram-Negative Bacteria, hoffmann, M3i, Male, Oligonucleotide Array Sequence Analysis, reichhart, Signal Transduction
@article{irving_genome-wide_2001,
title = {A genome-wide analysis of immune responses in Drosophila},
author = {Phil Irving and Laurent Troxler and Timothy S Heuer and Marcia Belvin and Casey Kopczynski and Jean-Marc Reichhart and Jules A Hoffmann and Charles Hetru},
doi = {10.1073/pnas.261573998},
issn = {0027-8424},
year = {2001},
date = {2001-12-01},
journal = {Proc. Natl. Acad. Sci. U.S.A.},
volume = {98},
number = {26},
pages = {15119--15124},
abstract = {Oligonucleotide DNA microarrays were used for a genome-wide analysis of immune-challenged Drosophila infected with Gram-positive or Gram-negative bacteria, or with fungi. Aside from the expression of an established set of immune defense genes, a significant number of previously unseen immune-induced genes were found. Genes of particular interest include corin- and Stubble-like genes, both of which have a type II transmembrane domain; easter- and snake-like genes, which may fulfil the roles of easter and snake in the Toll pathway; and a masquerade-like gene, potentially involved in enzyme regulation. The microarray data has also helped to greatly reduce the number of target genes in large gene groups, such as the proteases, helping to direct the choices for future mutant studies. Many of the up-regulated genes fit into the current conceptual framework of host defense, whereas others, including the substantial number of genes with unknown functions, offer new avenues for research.},
keywords = {Animals, bioinformatic, Gene Expression Regulation, Genome, Gram-Negative Bacteria, hoffmann, M3i, Male, Oligonucleotide Array Sequence Analysis, reichhart, Signal Transduction},
pubstate = {published},
tppubtype = {article}
}