Huang Jianqiong, Lou Yanyan, Liu Jiyong, Bulet Philippe, Cai Chuping, Ma Kaiyu, Jiao Renjie, Hoffmann Jules A., Liégeois Samuel, Lia Zi, Ferrandon Dominique
A Toll pathway effector protects Drosophila specifically from distinct toxins secreted by a fungus or a bacterium Article de journal
Dans: PNAS, vol. 120, no. 12, 2023.
Résumé | Liens | BibTeX | Étiquettes: Baramicin A, Destruxin A, disease tolerance, enterocin O16, ferrandon, hoffmann, M3i, microbial toxins, resilience
@article{Huang2023,
title = {A Toll pathway effector protects Drosophila specifically from distinct toxins secreted by a fungus or a bacterium},
author = {Jianqiong Huang and Yanyan Lou and Jiyong Liu and Philippe Bulet and Chuping Cai and Kaiyu Ma and Renjie Jiao and Jules A. Hoffmann and Samuel Liégeois and Zi Lia and Dominique Ferrandon},
editor = {Hugo Bellen, Baylor College of Medicine, Houston, TX},
url = {https://doi.org/10.1073/pnas.2205140120},
doi = {10.1073/pnas.2205140120},
year = {2023},
date = {2023-03-14},
urldate = {2023-03-14},
journal = {PNAS},
volume = {120},
number = {12},
abstract = {Major immune response pathways control the expression of hundreds of genes that represent potential effectors of the immune response. The Drosophila Toll pathway is required in the host defenses against several Gram-positive bacterial infections as well as against fungal infections. The current paradigm is that peptides secreted in the hemolymph during the systemic immune response are either bona fide antimicrobial peptides or likely ones. The finding of a dual role for one Toll pathway effector in the resilience to both Enterococcus faecalis and Metarhizium robertsii infections underscores an original concept in insect innate immunity. Evolution can select effectors tailored to protect the host from the action of microbial toxins of prokaryotic or eukaryotic origin, independently of antibodies or detoxification pathways.},
keywords = {Baramicin A, Destruxin A, disease tolerance, enterocin O16, ferrandon, hoffmann, M3i, microbial toxins, resilience},
pubstate = {published},
tppubtype = {article}
}
Prakash Pragya, Roychowdhury-Sinha Arghyashree, Goto Akira
Verloren negatively regulates the expression of IMD pathway dependent antimicrobial peptides in Drosophila Article de journal
Dans: Scientific Reports, vol. 11, no. 15549, 2021.
Résumé | Liens | BibTeX | Étiquettes: bacteria, Biochemistry, DNA, Fungi, Gene Expression, gene regulation, Genetics, hoffmann, Immunochemistry, Immunology, infection, inflammation, Innate immune cells, innate immunity, M3i, microbiology, Molecular Biology, pathogens, RNA, RNAi, Signal Transduction, Transcription
@article{Goto2021,
title = {Verloren negatively regulates the expression of IMD pathway dependent antimicrobial peptides in Drosophila},
author = {Pragya Prakash and Arghyashree Roychowdhury-Sinha and Akira Goto},
url = {https://www.nature.com/articles/s41598-021-94973-0},
doi = {10.1038/s41598-021-94973-0},
year = {2021},
date = {2021-07-30},
journal = {Scientific Reports},
volume = {11},
number = {15549},
abstract = {Drosophila immune deficiency (IMD) pathway is similar to the human tumor necrosis factor receptor (TNFR) signaling pathway and is preferentially activated by Gram-negative bacterial infection. Recent studies highlighted the importance of IMD pathway regulation as it is tightly controlled by numbers of negative regulators at multiple levels. Here, we report a new negative regulator of the IMD pathway, Verloren (Velo). Silencing of Velo led to constitutive expression of the IMD pathway dependent antimicrobial peptides (AMPs), and Escherichia coli stimulation further enhanced the AMP expression. Epistatic analysis indicated that Velo knock-down mediated AMP upregulation is dependent on the canonical members of the IMD pathway. The immune fluorescent study using overexpression constructs revealed that Velo resides both in the nucleus and cytoplasm, but the majority (~ 75%) is localized in the nucleus. We also observed from in vivo analysis that Velo knock-down flies exhibit significant upregulation of the AMP expression and reduced bacterial load. Survival experiments showed that Velo knock-down flies have a short lifespan and are susceptible to the infection of pathogenic Gram-negative bacteria, P. aeruginosa. Taken together, these data suggest that Velo is an additional new negative regulator of the IMD pathway, possibly acting in both the nucleus and cytoplasm.},
keywords = {bacteria, Biochemistry, DNA, Fungi, Gene Expression, gene regulation, Genetics, hoffmann, Immunochemistry, Immunology, infection, inflammation, Innate immune cells, innate immunity, M3i, microbiology, Molecular Biology, pathogens, RNA, RNAi, Signal Transduction, Transcription},
pubstate = {published},
tppubtype = {article}
}
Chen Di, Roychowdhury-Sinha Arghyashree, Prakash Pragya, Lan Xiao, Fan Wenmin, Goto Akira, Hoffmann Jules A.
A time course transcriptomic analysis of host and injected oncogenic cells reveals new aspects of Drosophila immune defenses Article de journal
Dans: PNAS, vol. 118, no. 12, 2021.
Résumé | Liens | BibTeX | Étiquettes: cancer, chemoreceptor, Drosophila melanogaster, goto, hoffmann, innate immunity, M3i, RasV12
@article{chen2021,
title = {A time course transcriptomic analysis of host and injected oncogenic cells reveals new aspects of Drosophila immune defenses},
author = {Di Chen and Arghyashree Roychowdhury-Sinha and Pragya Prakash and Xiao Lan and Wenmin Fan and Akira Goto and Jules A. Hoffmann},
url = {https://www.pnas.org/content/118/12/e2100825118},
doi = {https://doi.org/10.1073/pnas.2100825118},
year = {2021},
date = {2021-03-23},
journal = {PNAS},
volume = {118},
number = {12},
abstract = {Oncogenic RasV12 cells [A. Simcox et al., PLoS Genet. 4, e1000142 (2008)] injected into adult males proliferated massively after a lag period of several days, and led to the demise of the flies after 2 to 3 wk. The injection induced an early massive transcriptomic response that, unexpectedly, included more than 100 genes encoding chemoreceptors of various families. The kinetics of induction and the identities of the induced genes differed markedly from the responses generated by injections of microbes. Subsequently, hundreds of genes were up-regulated, attesting to intense catabolic activities in the flies, active tracheogenesis, and cuticulogenesis, as well as stress and inflammation-type responses. At 11 d after the injections, GFP-positive oncogenic cells isolated from the host flies exhibited a markedly different transcriptomic profile from that of the host and distinct from that at the time of their injection, including in particular up-regulated expression of genes typical for cells engaged in the classical antimicrobial response of Drosophila.},
keywords = {cancer, chemoreceptor, Drosophila melanogaster, goto, hoffmann, innate immunity, M3i, RasV12},
pubstate = {published},
tppubtype = {article}
}
Imler JL, Hofmann JA
L'immunité innée Chapitre d'ouvrage
Dans: Cramer, P; Meignien, A (Ed.): vol. Le défi des maladies infectieuses, p. 191-203, Les éditions du Palais, Docis, 2020, ISBN: 9791090119895.
BibTeX | Étiquettes: hoffmann, imler, M3i
@inbook{Imler_2020,
title = {L'immunité innée},
author = {JL Imler and JA Hofmann},
editor = {P Cramer and A Meignien},
isbn = {9791090119895},
year = {2020},
date = {2020-11-30},
volume = {Le défi des maladies infectieuses},
pages = {191-203},
publisher = {Les éditions du Palais},
edition = {Docis},
keywords = {hoffmann, imler, M3i},
pubstate = {published},
tppubtype = {inbook}
}
Goto Akira, Okado Kiyoshi, Martins Nelson, Cai Hua, Barbier Vincent, Lamiable Olivier, Troxler Laurent, Santiago Estelle, Kuhn Lauriane, Paik Donggi, Silverman Neal, Holleufer Andreas, Hartmann Rune, Liu Jiyong, Peng Tao, Hoffmann Jules A, Meignin Carine, Daeffler Laurent, Imler Jean-Luc
The Kinase IKKβ Regulates a STING-and NF-κB-Dependent Antiviral Response Pathway in Drosophila Article de journal
Dans: Immunity, vol. 52, no. 1, p. 200, 2020.
Résumé | Liens | BibTeX | Étiquettes: antiviral, Drosophila, hoffmann, imler, Kinase, M3i, meignin, STING
@article{goto2020,
title = {The Kinase IKKβ Regulates a STING-and NF-κB-Dependent Antiviral Response Pathway in Drosophila},
author = {Akira Goto and Kiyoshi Okado and Nelson Martins and Hua Cai and Vincent Barbier and Olivier Lamiable and Laurent Troxler and Estelle Santiago and Lauriane Kuhn and Donggi Paik and Neal Silverman and Andreas Holleufer and Rune Hartmann and Jiyong Liu and Tao Peng and Jules A Hoffmann and Carine Meignin and Laurent Daeffler and Jean-Luc Imler
},
url = {https://www-sciencedirect-com.insb.bib.cnrs.fr/science/article/pii/S107476131930528X},
doi = {10.1016/j.immuni.2019.12.009 },
year = {2020},
date = {2020-01-14},
journal = {Immunity},
volume = {52},
number = {1},
pages = {200},
abstract = {Antiviral immunity inDrosophilainvolves RNA inter-ference and poorly characterized inducible re-sponses. Here, we showed that two components ofthe IMD pathway, the kinase dIKKband the tran-scription factor Relish, were required to controlinfection by two picorna-like viruses. We identifieda set of genes induced by viral infection and regu-lated by dIKKband Relish, which included an ortho-log of STING. We showed that dSTING participatedin the control of infection by picorna-like viruses,acting upstream of dIKKbto regulate expression ofNazo, an antiviral factor. Our data reveal an antiviralfunction for STING in an animal model devoid of inter-ferons and suggest an evolutionarily ancient role forthis molecule in antiviral immunity.},
keywords = {antiviral, Drosophila, hoffmann, imler, Kinase, M3i, meignin, STING},
pubstate = {published},
tppubtype = {article}
}
Goto Akira, Okado Kiyoshi, Martins Nelson, Cai Hua, Barbier Vincent, Lamiable Olivier, Troxler Laurent, Santiago Estelle, Kuhn Lauriane, Paik Donggi, Silverman Neal, Holleufer Andreas, Hartmann Rune, Liu Jiyong, Peng Tao, Hoffmann Jules A, Meignin Carine, Daeffler Laurent, Imler Jean-Luc
The Kinase IKKβ Regulates a STING- and NF-κB-Dependent Antiviral Response Pathway in Drosophila Article de journal
Dans: Immunity, no. 49, p. 225-234, 2018.
Résumé | Liens | BibTeX | Étiquettes: hoffmann, imler, M3i, meignin, PPSE
@article{Goto2018,
title = {The Kinase IKKβ Regulates a STING- and NF-κB-Dependent Antiviral Response Pathway in Drosophila},
author = {Akira Goto and Kiyoshi Okado and Nelson Martins and Hua Cai and Vincent Barbier and Olivier Lamiable and Laurent Troxler and Estelle Santiago and Lauriane Kuhn and Donggi Paik and Neal Silverman and Andreas Holleufer and Rune Hartmann and Jiyong Liu and Tao Peng and Jules A Hoffmann and Carine Meignin and Laurent Daeffler and Jean-Luc Imler},
editor = {Elsevier Inc.},
url = {https://doi.org/10.1016/j.immuni.2018.07.013},
doi = {j.immuni.2018.07.013},
year = {2018},
date = {2018-08-21},
journal = {Immunity},
number = {49},
pages = {225-234},
abstract = {Antiviral immunity in Drosophila involves RNA interference and poorly characterized inducible responses. Here, we showed that two components of the IMD pathway, the kinase dIKKβ and the transcription factor Relish, were required to control infection by two picorna-like viruses. We identified a set of genes induced by viral infection and regulated by dIKKβ and Relish, which included an ortholog of STING. We showed that dSTING participated in the control of infection by picorna-like viruses, acting upstream of dIKKβ to regulate expression of Nazo, an antiviral factor. Our data reveal an antiviral function for STING in an animal model devoid of interferons and suggest an evolutionarily ancient role for this molecule in antiviral immunity.},
keywords = {hoffmann, imler, M3i, meignin, PPSE},
pubstate = {published},
tppubtype = {article}
}
Lamiable Olivier, Kellenberger Christine, Kemp Cordula, Troxler Laurent, Pelte Nadège, Boutros Michael, Marques Joao Trindade, Daeffler Laurent, Hoffmann Jules A, Roussel Alain, Imler Jean-Luc
Cytokine Diedel and a viral homologue suppress the IMD pathway in Drosophila Article de journal
Dans: PNAS, vol. 113, no. 3, p. 698–703, 2016, ISSN: 0027-8424, 1091-6490.
Résumé | Liens | BibTeX | Étiquettes: antiviral immunity, bioinformatic, cytokine, Edin, hoffmann, imler, M3i, Sindbis Virus, virokine
@article{lamiable_cytokine_2016,
title = {Cytokine Diedel and a viral homologue suppress the IMD pathway in Drosophila},
author = {Olivier Lamiable and Christine Kellenberger and Cordula Kemp and Laurent Troxler and Nadège Pelte and Michael Boutros and Joao Trindade Marques and Laurent Daeffler and Jules A Hoffmann and Alain Roussel and Jean-Luc Imler},
url = {http://www.pnas.org/content/113/3/698.abstract},
doi = {10.1073/pnas.1516122113},
issn = {0027-8424, 1091-6490},
year = {2016},
date = {2016-01-19},
urldate = {2016-01-07},
journal = {PNAS},
volume = {113},
number = {3},
pages = {698–703},
abstract = {Viruses are obligatory intracellular parasites that suffer strong evolutionary pressure from the host immune system. Rapidly evolving viral genomes can adapt to this pressure by acquiring genes that counteract host defense mechanisms. For example, many vertebrate DNA viruses have hijacked cellular genes encoding cytokines or cytokine receptors to disrupt host cell communication. Insect viruses express suppressors of RNA interference or apoptosis, highlighting the importance of these cell intrinsic antiviral mechanisms in invertebrates. Here, we report the identification and characterization of a family of proteins encoded by insect DNA viruses that are homologous to a 12-kDa circulating protein encoded by the virus-induced Drosophila gene diedel (die). We show that die mutant flies have shortened lifespan and succumb more rapidly than controls when infected with Sindbis virus. This reduced viability is associated with deregulated activation of the immune deficiency (IMD) pathway of host defense and can be rescued by mutations in the genes encoding the homolog of IKKγ or IMD itself. Our results reveal an endogenous pathway that is exploited by insect viruses to modulate NF-κB signaling and promote fly survival during the antiviral response.},
keywords = {antiviral immunity, bioinformatic, cytokine, Edin, hoffmann, imler, M3i, Sindbis Virus, virokine},
pubstate = {published},
tppubtype = {article}
}
Lamiable Olivier, Arnold Johan, da de Faria Isaque Joao Silva, Olmo Roenick Proveti, Bergami Francesco, Meignin Carine, Hoffmann Jules A, Marques Joao Trindade, Imler Jean-Luc
Analysis of the Contribution of Hemocytes and Autophagy to Drosophila Antiviral Immunity Article de journal
Dans: J. Virol., vol. 90, no. 11, p. 5415–5426, 2016, ISSN: 0022-538X, 1098-5514.
Liens | BibTeX | Étiquettes: antiviral immunity, Autophagy, Hemocytes, hoffmann, imler, M3i, meignin
@article{lamiable_analysis_2016,
title = {Analysis of the Contribution of Hemocytes and Autophagy to Drosophila Antiviral Immunity},
author = {Olivier Lamiable and Johan Arnold and Isaque Joao Silva da de Faria and Roenick Proveti Olmo and Francesco Bergami and Carine Meignin and Jules A Hoffmann and Joao Trindade Marques and Jean-Luc Imler},
url = {http://jvi.asm.org/content/90/11/5415},
doi = {10.1128/JVI.00238-16},
issn = {0022-538X, 1098-5514},
year = {2016},
date = {2016-01-01},
urldate = {2016-06-05},
journal = {J. Virol.},
volume = {90},
number = {11},
pages = {5415--5426},
keywords = {antiviral immunity, Autophagy, Hemocytes, hoffmann, imler, M3i, meignin},
pubstate = {published},
tppubtype = {article}
}
Chtarbanova Stanislava, Lamiable Olivier, Lee Kwang-Zin, Galiana Delphine, Troxler Laurent, Meignin Carine, Hetru Charles, Hoffmann Jules A, Daeffler Laurent, Imler Jean-Luc
Drosophila C virus systemic infection leads to intestinal obstruction Article de journal
Dans: Journal of Virology, vol. 88, no. 24, p. 14057–14069, 2014, ISSN: 1098-5514.
Résumé | Liens | BibTeX | Étiquettes: Animals, bioinformatic, Dicistroviridae, Female, Gastrointestinal Tract, Gene Expression Profiling, hoffmann, imler, Intestinal Obstruction, M3i, meignin, Muscle, Nodaviridae, Sindbis Virus, Smooth, Viral Tropism
@article{chtarbanova_drosophila_2014,
title = {Drosophila C virus systemic infection leads to intestinal obstruction},
author = {Stanislava Chtarbanova and Olivier Lamiable and Kwang-Zin Lee and Delphine Galiana and Laurent Troxler and Carine Meignin and Charles Hetru and Jules A Hoffmann and Laurent Daeffler and Jean-Luc Imler},
url = {http://jvi.asm.org/content/88/24/14057},
doi = {10.1128/JVI.02320-14},
issn = {1098-5514},
year = {2014},
date = {2014-12-01},
journal = {Journal of Virology},
volume = {88},
number = {24},
pages = {14057--14069},
abstract = {Drosophila C virus (DCV) is a positive-sense RNA virus belonging to the Dicistroviridae family. This natural pathogen of the model organism Drosophila melanogaster is commonly used to investigate antiviral host defense in flies, which involves both RNA interference and inducible responses. Although lethality is used routinely as a readout for the efficiency of the antiviral immune response in these studies, virus-induced pathologies in flies still are poorly understood. Here, we characterize the pathogenesis associated with systemic DCV infection. Comparison of the transcriptome of flies infected with DCV or two other positive-sense RNA viruses, Flock House virus and Sindbis virus, reveals that DCV infection, unlike those of the other two viruses, represses the expression of a large number of genes. Several of these genes are expressed specifically in the midgut and also are repressed by starvation. We show that systemic DCV infection triggers a nutritional stress in Drosophila which results from intestinal obstruction with the accumulation of peritrophic matrix at the entry of the midgut and the accumulation of the food ingested in the crop, a blind muscular food storage organ. The related virus cricket paralysis virus (CrPV), which efficiently grows in Drosophila, does not trigger this pathology. We show that DCV, but not CrPV, infects the smooth muscles surrounding the crop, causing extensive cytopathology and strongly reducing the rate of contractions. We conclude that the pathogenesis associated with systemic DCV infection results from the tropism of the virus for an important organ within the foregut of dipteran insects, the crop. IMPORTANCE: DCV is one of the few identified natural viral pathogens affecting the model organism Drosophila melanogaster. As such, it is an important virus for the deciphering of host-virus interactions in insects. We characterize here the pathogenesis associated with DCV infection in flies and show that it results from the tropism of the virus for an essential but poorly characterized organ in the digestive tract, the crop. Our results may have relevance for other members of the Dicistroviridae, some of which are pathogenic to beneficial or pest insect species.},
keywords = {Animals, bioinformatic, Dicistroviridae, Female, Gastrointestinal Tract, Gene Expression Profiling, hoffmann, imler, Intestinal Obstruction, M3i, meignin, Muscle, Nodaviridae, Sindbis Virus, Smooth, Viral Tropism},
pubstate = {published},
tppubtype = {article}
}
Tartey Sarang, Matsushita Kazufumi, Vandenbon Alexis, Ori Daisuke, Imamura Tomoko, Mino Takashi, Standley Daron M, Hoffmann Jules A, Reichhart Jean-Marc, Akira Shizuo, Takeuchi Osamu
Akirin2 is critical for inducing inflammatory genes by bridging IκB-ζ and the SWI/SNF complex Article de journal
Dans: EMBO J., vol. 33, no. 20, p. 2332–2348, 2014, ISSN: 1460-2075.
Résumé | Liens | BibTeX | Étiquettes: Adaptor Proteins, Animals, Cell Nucleus, Chromatin Assembly and Disassembly, chromatin remodeling, Chromosomal Proteins, cytokine, Cytokines, Female, Gene Expression Regulation, gene regulation, Genetic, hoffmann, Humans, Immunity, Innate, innate immunity, Knockout, Listeria monocytogenes, M3i, Macrophages, Male, Mice, Multiprotein Complexes, Non-Histone, Nuclear Proteins, Promoter Regions, Protein Binding, reichhart, Repressor Proteins, Sequence Deletion, Signal Transducing, Transcriptional Activation
@article{tartey_akirin2_2014,
title = {Akirin2 is critical for inducing inflammatory genes by bridging IκB-ζ and the SWI/SNF complex},
author = {Sarang Tartey and Kazufumi Matsushita and Alexis Vandenbon and Daisuke Ori and Tomoko Imamura and Takashi Mino and Daron M Standley and Jules A Hoffmann and Jean-Marc Reichhart and Shizuo Akira and Osamu Takeuchi},
doi = {10.15252/embj.201488447},
issn = {1460-2075},
year = {2014},
date = {2014-10-01},
journal = {EMBO J.},
volume = {33},
number = {20},
pages = {2332--2348},
abstract = {Transcription of inflammatory genes in innate immune cells is coordinately regulated by transcription factors, including NF-κB, and chromatin modifiers. However, it remains unclear how microbial sensing initiates chromatin remodeling. Here, we show that Akirin2, an evolutionarily conserved nuclear protein, bridges NF-κB and the chromatin remodeling SWI/SNF complex by interacting with BRG1-Associated Factor 60 (BAF60) proteins as well as IκB-ζ, which forms a complex with the NF-κB p50 subunit. These interactions are essential for Toll-like receptor-, RIG-I-, and Listeria-mediated expression of proinflammatory genes including Il6 and Il12b in macrophages. Consistently, effective clearance of Listeria infection required Akirin2. Furthermore, Akirin2 and IκB-ζ recruitment to the Il6 promoter depend upon the presence of IκB-ζ and Akirin2, respectively, for regulation of chromatin remodeling. BAF60 proteins were also essential for the induction of Il6 in response to LPS stimulation. Collectively, the IκB-ζ-Akirin2-BAF60 complex physically links the NF-κB and SWI/SNF complexes in innate immune cell activation. By recruiting SWI/SNF chromatin remodellers to IκB-ζ, transcriptional coactivator for NF-κB, the conserved nuclear protein Akirin2 stimulates pro-inflammatory gene promoters in mouse macrophages during innate immune responses to viral or bacterial infection.},
keywords = {Adaptor Proteins, Animals, Cell Nucleus, Chromatin Assembly and Disassembly, chromatin remodeling, Chromosomal Proteins, cytokine, Cytokines, Female, Gene Expression Regulation, gene regulation, Genetic, hoffmann, Humans, Immunity, Innate, innate immunity, Knockout, Listeria monocytogenes, M3i, Macrophages, Male, Mice, Multiprotein Complexes, Non-Histone, Nuclear Proteins, Promoter Regions, Protein Binding, reichhart, Repressor Proteins, Sequence Deletion, Signal Transducing, Transcriptional Activation},
pubstate = {published},
tppubtype = {article}
}
Goto Akira, Fukuyama Hidehiro, Imler Jean-Luc, Hoffmann Jules A
The chromatin regulator DMAP1 modulates activity of the nuclear factor B (NF-B) transcription factor Relish in the Drosophila innate immune response Article de journal
Dans: The Journal of Biological Chemistry, vol. 289, no. 30, p. 20470–20476, 2014, ISSN: 1083-351X.
Résumé | Liens | BibTeX | Étiquettes: Animals, Cell Line, Chromatin Assembly and Disassembly, Epistasis, Escherichia coli, Escherichia coli Infections, Genetic, hoffmann, imler, Immunity, Innate, M3i, NF-kappa B, Repressor Proteins, Signal Transduction, Transcription Factors
@article{goto_chromatin_2014,
title = {The chromatin regulator DMAP1 modulates activity of the nuclear factor B (NF-B) transcription factor Relish in the Drosophila innate immune response},
author = {Akira Goto and Hidehiro Fukuyama and Jean-Luc Imler and Jules A Hoffmann},
doi = {10.1074/jbc.C114.553719},
issn = {1083-351X},
year = {2014},
date = {2014-07-01},
journal = {The Journal of Biological Chemistry},
volume = {289},
number = {30},
pages = {20470--20476},
abstract = {The host defense of the model organism Drosophila is under the control of two major signaling cascades controlling transcription factors of the NF-B family, the Toll and the immune deficiency (IMD) pathways. The latter shares extensive similarities with the mammalian TNF-R pathway and was initially discovered for its role in anti-Gram-negative bacterial reactions. A previous interactome study from this laboratory reported that an unexpectedly large number of proteins are binding to the canonical components of the IMD pathway. Here, we focus on DNA methyltransferase-associated protein 1 (DMAP1), which this study identified as an interactant of Relish, a Drosophila transcription factor reminiscent of the mammalian p105 NF-B protein. We show that silencing of DMAP1 expression both in S2 cells and in flies results in a significant reduction of Escherichia coli-induced expression of antimicrobial peptides. Epistatic analysis indicates that DMAP1 acts in parallel or downstream of Relish. Co-immunoprecipitation experiments further reveal that, in addition to Relish, DMAP1 also interacts with Akirin and the Brahma-associated protein 55 kDa (BAP55). Taken together, these results reveal that DMAP1 is a novel nuclear modulator of the IMD pathway, possibly acting at the level of chromatin remodeling.},
keywords = {Animals, Cell Line, Chromatin Assembly and Disassembly, Epistasis, Escherichia coli, Escherichia coli Infections, Genetic, hoffmann, imler, Immunity, Innate, M3i, NF-kappa B, Repressor Proteins, Signal Transduction, Transcription Factors},
pubstate = {published},
tppubtype = {article}
}
Imler Jean-Luc, Hoffmann Jules A
Le défi des maladies infectieuses Chapitre d'ouvrage
Dans: collection Guérir et prévenir demain, Ph. Cramer (Ed.): Chapitre « L’immunité innée », p. 167-174, Editions DOCIS, 2014, ISBN: 978-2-85525-390-9.
Résumé | BibTeX | Étiquettes: hoffmann, imler, innate immunity, M3i, maladies infectieuses
@inbook{Imler2014,
title = {Le défi des maladies infectieuses},
author = {Jean-Luc Imler and Jules A Hoffmann},
editor = {Ph. Cramer collection Guérir et prévenir demain},
isbn = {978-2-85525-390-9},
year = {2014},
date = {2014-06-01},
pages = {167-174},
publisher = {Editions DOCIS},
chapter = {« L’immunité innée »},
abstract = {La lèpre fait des ravages dès l’Antiquité, les épidémies de peste tuent au Moyen Âge et celles de choléra dévastent l’Inde. La tuberculose émerge véritablement au XIXème siècle, la grippe espagnole a fait vingt millions de morts en 1918 et de nouvelles maladies apparaissent : les infections hospitalières, les hépatites, le SIDA, les fièvres hémorragiques, la légionellose,…
Toutes ces maladies ont un point commun, ce sont des maladies infectieuses qui sont pour la médecine un vrai défi, tant elles sont dévastatrices. L’innovation a eu et continue à avoir un rôle essentiel dans la caractérisation de ces maladies, la découverte de l’agent responsable, leur traitement et leur prévention. Ce livre, dont les auteurs font partie des plus éminents spécialistes français et européens des maladies infectieuses décrit, de façon abordable par tous, aussi bien les découvertes et les inventions essentielles à ce domaine que les avancées médicales.},
keywords = {hoffmann, imler, innate immunity, M3i, maladies infectieuses},
pubstate = {published},
tppubtype = {inbook}
}
Majzoub K, Hafirassou M L, Meignin C, Goto A, Marzi S, Fedorova A, Verdier Y, Vinh J, Hoffmann J A, Martin F, Baumert T F, Schuster C, Imler JL
RACK1 Controls IRES-Mediated Translation of Viruses. Article de journal
Dans: Cell, vol. 159, no. 5, p. 1086-1095, 2014, ISBN: 25416947.
Résumé | Liens | BibTeX | Étiquettes: ERIANI, hoffmann, imler, M3i, meignin, ROMBY, Unité ARN
@article{,
title = {RACK1 Controls IRES-Mediated Translation of Viruses.},
author = {K Majzoub and M L Hafirassou and C Meignin and A Goto and S Marzi and A Fedorova and Y Verdier and J Vinh and J A Hoffmann and F Martin and T F Baumert and C Schuster and JL Imler},
url = {http://www.ncbi.nlm.nih.gov/pubmed/25416947},
doi = {10.1016/j.cell.2014.10.041},
isbn = {25416947},
year = {2014},
date = {2014-01-01},
journal = {Cell},
volume = {159},
number = {5},
pages = {1086-1095},
abstract = {Fighting viral infections is hampered by the scarcity of viral targets and their variability, resulting in development of resistance. Viruses depend on cellular molecules-which are attractive alternative targets-for their life cycle, provided that they are dispensable for normal cell functions. Using the model organism Drosophila melanogaster, we identify the ribosomal protein RACK1 as a cellular factor required for infection by internal ribosome entry site (IRES)-containing viruses. We further show that RACK1 is an essential determinant for hepatitis C virus translation and infection, indicating that its function is conserved for distantly related human and fly viruses. Inhibition of RACK1 does not affect Drosophila or human cell viability and proliferation, and RACK1-silenced adult flies are viable, indicating that this protein is not essential for general translation. Our findings demonstrate a specific function for RACK1 in selective mRNA translation and uncover a target for the development of broad antiviral intervention.},
keywords = {ERIANI, hoffmann, imler, M3i, meignin, ROMBY, Unité ARN},
pubstate = {published},
tppubtype = {article}
}
Fukuyama Hidehiro, Verdier Yann, Guan Yongsheng, Makino-Okamura Chieko, Shilova Victoria, Liu Xi, Maksoud Elie, Matsubayashi Jun, Haddad Iman, Spirohn Kerstin, Ono Kenichiro, Hetru Charles, Rossier Jean, Ideker Trey, Boutros Michael, Vinh Joëlle, Hoffmann Jules A
Landscape of protein-protein interactions in Drosophila immune deficiency signaling during bacterial challenge Article de journal
Dans: Proc. Natl. Acad. Sci. U.S.A., vol. 110, no. 26, p. 10717–10722, 2013, ISSN: 1091-6490.
Résumé | Liens | BibTeX | Étiquettes: Amino Acid, Animals, Chromatin Assembly and Disassembly, Escherichia coli, functional proteomics, Genes, Genetically Modified, Histone Acetyltransferases, hoffmann, Host-Pathogen Interactions, Humans, IMD interactome, Insect, M3i, Models, Molecular, Protein Interaction Maps, Sequence Homology, Signal Transduction, small ubiquitin-like modifier
@article{fukuyama_landscape_2013,
title = {Landscape of protein-protein interactions in Drosophila immune deficiency signaling during bacterial challenge},
author = {Hidehiro Fukuyama and Yann Verdier and Yongsheng Guan and Chieko Makino-Okamura and Victoria Shilova and Xi Liu and Elie Maksoud and Jun Matsubayashi and Iman Haddad and Kerstin Spirohn and Kenichiro Ono and Charles Hetru and Jean Rossier and Trey Ideker and Michael Boutros and Joëlle Vinh and Jules A Hoffmann},
doi = {10.1073/pnas.1304380110},
issn = {1091-6490},
year = {2013},
date = {2013-06-01},
journal = {Proc. Natl. Acad. Sci. U.S.A.},
volume = {110},
number = {26},
pages = {10717--10722},
abstract = {The Drosophila defense against pathogens largely relies on the activation of two signaling pathways: immune deficiency (IMD) and Toll. The IMD pathway is triggered mainly by Gram-negative bacteria, whereas the Toll pathway responds predominantly to Gram-positive bacteria and fungi. The activation of these pathways leads to the rapid induction of numerous NF-κB-induced immune response genes, including antimicrobial peptide genes. The IMD pathway shows significant similarities with the TNF receptor pathway. Recent evidence indicates that the IMD pathway is also activated in response to various noninfectious stimuli (i.e., inflammatory-like reactions). To gain a better understanding of the molecular machinery underlying the pleiotropic functions of this pathway, we first performed a comprehensive proteomics analysis to identify the proteins interacting with the 11 canonical members of the pathway initially identified by genetic studies. We identified 369 interacting proteins (corresponding to 291 genes) in heat-killed Escherichia coli-stimulated Drosophila S2 cells, 92% of which have human orthologs. A comparative analysis of gene ontology from fly or human gene annotation databases points to four significant common categories: (i) the NuA4, nucleosome acetyltransferase of H4, histone acetyltransferase complex, (ii) the switching defective/sucrose nonfermenting-type chromatin remodeling complex, (iii) transcription coactivator activity, and (iv) translation factor activity. Here we demonstrate that sumoylation of the IκB kinase homolog immune response-deficient 5 plays an important role in the induction of antimicrobial peptide genes through a highly conserved sumoylation consensus site during bacterial challenge. Taken together, the proteomics data presented here provide a unique avenue for a comparative functional analysis of proteins involved in innate immune reactions in flies and mammals.},
keywords = {Amino Acid, Animals, Chromatin Assembly and Disassembly, Escherichia coli, functional proteomics, Genes, Genetically Modified, Histone Acetyltransferases, hoffmann, Host-Pathogen Interactions, Humans, IMD interactome, Insect, M3i, Models, Molecular, Protein Interaction Maps, Sequence Homology, Signal Transduction, small ubiquitin-like modifier},
pubstate = {published},
tppubtype = {article}
}
Bonnay François, Cohen-Berros Eva, Hoffmann Martine, Kim Sabrina Y, Boulianne Gabrielle L, Hoffmann Jules A, Matt Nicolas, Reichhart Jean-Marc
Big bang gene modulates gut immune tolerance in Drosophila Article de journal
Dans: Proc. Natl. Acad. Sci. U.S.A., vol. 110, no. 8, p. 2957–2962, 2013, ISSN: 1091-6490.
Résumé | Liens | BibTeX | Étiquettes: Animals, hoffmann, Immune Tolerance, Longevity, M3i, matt, Membrane Proteins, reichhart
@article{bonnay_big_2013,
title = {Big bang gene modulates gut immune tolerance in Drosophila},
author = {François Bonnay and Eva Cohen-Berros and Martine Hoffmann and Sabrina Y Kim and Gabrielle L Boulianne and Jules A Hoffmann and Nicolas Matt and Jean-Marc Reichhart},
doi = {10.1073/pnas.1221910110},
issn = {1091-6490},
year = {2013},
date = {2013-02-01},
journal = {Proc. Natl. Acad. Sci. U.S.A.},
volume = {110},
number = {8},
pages = {2957--2962},
abstract = {Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases.},
keywords = {Animals, hoffmann, Immune Tolerance, Longevity, M3i, matt, Membrane Proteins, reichhart},
pubstate = {published},
tppubtype = {article}
}
Lemaitre Bruno, Nicolas Emmanuelle, Michaut Lydia, Reichhart Jean-Marc, Hoffmann Jules A
Pillars article: the dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996. 86: 973-983 Article de journal
Dans: J. Immunol., vol. 188, no. 11, p. 5210–5220, 2012, ISSN: 1550-6606.
Résumé | BibTeX | Étiquettes: Animals, Antifungal Agents, Developmental, DNA-Binding Proteins, Gene Expression Regulation, history, hoffmann, M3i, Multigene Family, Mycoses, Phosphoproteins, reichhart, Toll-Like Receptors
@article{lemaitre_pillars_2012,
title = {Pillars article: the dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996. 86: 973-983},
author = {Bruno Lemaitre and Emmanuelle Nicolas and Lydia Michaut and Jean-Marc Reichhart and Jules A Hoffmann},
issn = {1550-6606},
year = {2012},
date = {2012-06-01},
journal = {J. Immunol.},
volume = {188},
number = {11},
pages = {5210--5220},
abstract = {The cytokine-induced activation cascade of NF-kappaB in mammals and the activation of the morphogen dorsal in Drosophila embryos show striking structural and functional similarities (Toll/IL-1, Cactus/I-kappaB, and dorsal/NF-kappaB). Here we demonstrate that these parallels extend to the immune response of Drosophila. In particular, the intracellular components of the dorsoventral signaling pathway (except for dorsal) and the extracellular Toll ligand, spätzle regulatory gene cassette, control expression of the antifungal peptide gene drosomycin in adults. We also show that mutations in the Toll signaling pathway dramatically reduce survival after fungal infection. Antibacterial genes are induced either by a distinct pathway involving the immune deficiency gene (imd) or by combined activation of both imd and dorsoventral pathways.},
keywords = {Animals, Antifungal Agents, Developmental, DNA-Binding Proteins, Gene Expression Regulation, history, hoffmann, M3i, Multigene Family, Mycoses, Phosphoproteins, reichhart, Toll-Like Receptors},
pubstate = {published},
tppubtype = {article}
}
Imler Jean-Luc, Hoffmann Jules A
Nucleic Acid Sensors and Antiviral Immunity Chapitre d'ouvrage
Dans: eds T. Fujita & P. Sambhara, (Ed.): Chapitre 1 : Antiviral responses in invertebrates, p. 1-18, Landes Bioscience, 2012.
BibTeX | Étiquettes: antiviral immunity, hoffmann, imler, Invertebrate, M3i
@inbook{Imler2012,
title = {Nucleic Acid Sensors and Antiviral Immunity},
author = {Jean-Luc Imler and Jules A Hoffmann},
editor = {eds T. Fujita & P. Sambhara},
year = {2012},
date = {2012-06-01},
pages = {1-18},
publisher = {Landes Bioscience},
chapter = {1 : Antiviral responses in invertebrates},
keywords = {antiviral immunity, hoffmann, imler, Invertebrate, M3i},
pubstate = {published},
tppubtype = {inbook}
}
Liu Xi, Sano Teruyuki, Guan Yongsheng, Nagata Shigekazu, Hoffmann Jules A, Fukuyama Hidehiro
Drosophila EYA regulates the immune response against DNA through an evolutionarily conserved threonine phosphatase motif Article de journal
Dans: PLoS ONE, vol. 7, no. 8, p. e42725, 2012, ISSN: 1932-6203.
Résumé | Liens | BibTeX | Étiquettes: Amino Acid, Animals, Blotting, Conserved Sequence, Endodeoxyribonucleases, Eye Proteins, hoffmann, Immunoprecipitation, M3i, Phosphoprotein Phosphatases, Sequence Homology, Transcription Factors, Western
@article{liu_drosophila_2012,
title = {Drosophila EYA regulates the immune response against DNA through an evolutionarily conserved threonine phosphatase motif},
author = {Xi Liu and Teruyuki Sano and Yongsheng Guan and Shigekazu Nagata and Jules A Hoffmann and Hidehiro Fukuyama},
doi = {10.1371/journal.pone.0042725},
issn = {1932-6203},
year = {2012},
date = {2012-01-01},
journal = {PLoS ONE},
volume = {7},
number = {8},
pages = {e42725},
abstract = {Innate immune responses against DNA are essential to counter both pathogen infections and tissue damages. Mammalian EYAs were recently shown to play a role in regulating the innate immune responses against DNA. Here, we demonstrate that the unique Drosophila eya gene is also involved in the response specific to DNA. Haploinsufficiency of eya in mutants deficient for lysosomal DNase activity (DNaseII) reduces antimicrobial peptide gene expression, a hallmark for immune responses in flies. Like the mammalian orthologues, Drosophila EYA features a N-terminal threonine and C-terminal tyrosine phosphatase domain. Through the generation of a series of mutant EYA fly strains, we show that the threonine phosphatase domain, but not the tyrosine phosphatase domain, is responsible for the innate immune response against DNA. A similar role for the threonine phosphatase domain in mammalian EYA4 had been surmised on the basis of in vitro studies. Furthermore EYA associates with IKKβ and full-length RELISH, and the induction of the IMD pathway-dependent antimicrobial peptide gene is independent of SO. Our data provide the first in vivo demonstration for the immune function of EYA and point to their conserved immune function in response to endogenous DNA, throughout evolution.},
keywords = {Amino Acid, Animals, Blotting, Conserved Sequence, Endodeoxyribonucleases, Eye Proteins, hoffmann, Immunoprecipitation, M3i, Phosphoprotein Phosphatases, Sequence Homology, Transcription Factors, Western},
pubstate = {published},
tppubtype = {article}
}
Eleftherianos Ioannis, Won Sungyong, Chtarbanova Stanislava, Squiban Barbara, Ocorr Karen, Bodmer Rolf, Beutler Bruce, Hoffmann Jules A, Imler Jean-Luc
ATP-sensitive potassium channel (K(ATP))-dependent regulation of cardiotropic viral infections Article de journal
Dans: Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 29, p. 12024–12029, 2011, ISSN: 1091-6490.
Résumé | Liens | BibTeX | Étiquettes: Animals, Heart, HeLa Cells, hoffmann, Humans, imler, Immunity, Immunoblotting, Inbred C57BL, Innate, KATP Channels, M3i, Mice, Nodaviridae, Pinacidil, Reverse Transcriptase Polymerase Chain Reaction, RNA Interference, Tolbutamide, Viral Load, Viremia
@article{eleftherianos_atp-sensitive_2011,
title = {ATP-sensitive potassium channel (K(ATP))-dependent regulation of cardiotropic viral infections},
author = {Ioannis Eleftherianos and Sungyong Won and Stanislava Chtarbanova and Barbara Squiban and Karen Ocorr and Rolf Bodmer and Bruce Beutler and Jules A Hoffmann and Jean-Luc Imler},
doi = {10.1073/pnas.1108926108},
issn = {1091-6490},
year = {2011},
date = {2011-07-01},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
volume = {108},
number = {29},
pages = {12024--12029},
abstract = {The effects of the cellular environment on innate immunity remain poorly characterized. Here, we show that in Drosophila ATP-sensitive potassium channels (K(ATP)) mediate resistance to a cardiotropic RNA virus, Flock House virus (FHV). FHV viral load in the heart rapidly increases in K(ATP) mutant flies, leading to increased viremia and accelerated death. The effect of K(ATP) channels is dependent on the RNA interference genes Dcr-2, AGO2, and r2d2, indicating that an activity associated with this potassium channel participates in this antiviral pathway in Drosophila. Flies treated with the K(ATP) agonist drug pinacidil are protected against FHV infection, thus demonstrating the importance of this regulation of innate immunity by the cellular environment in the heart. In mice, the Coxsackievirus B3 replicates to higher titers in the hearts of mayday mutant animals, which are deficient in the Kir6.1 subunit of K(ATP) channels, than in controls. Together, our data suggest that K(ATP) channel deregulation can have a critical impact on innate antiviral immunity in the heart.},
keywords = {Animals, Heart, HeLa Cells, hoffmann, Humans, imler, Immunity, Immunoblotting, Inbred C57BL, Innate, KATP Channels, M3i, Mice, Nodaviridae, Pinacidil, Reverse Transcriptase Polymerase Chain Reaction, RNA Interference, Tolbutamide, Viral Load, Viremia},
pubstate = {published},
tppubtype = {article}
}
Hetru Charles, Hoffmann Jules A
NF-kappaB in the immune response of Drosophila Article de journal
Dans: Cold Spring Harb Perspect Biol, vol. 1, no. 6, p. a000232, 2009, ISSN: 1943-0264.
Résumé | Liens | BibTeX | Étiquettes: Animals, bacteria, Fungi, Gene Expression Regulation, hoffmann, M3i, NF-kappa B
@article{hetru_nf-kappab_2009,
title = {NF-kappaB in the immune response of Drosophila},
author = {Charles Hetru and Jules A Hoffmann},
doi = {10.1101/cshperspect.a000232},
issn = {1943-0264},
year = {2009},
date = {2009-12-01},
journal = {Cold Spring Harb Perspect Biol},
volume = {1},
number = {6},
pages = {a000232},
abstract = {The nuclear factor kappaB (NF-kappaB) pathways play a major role in Drosophila host defense. Two recognition and signaling cascades control this immune response. The Toll pathway is activated by Gram-positive bacteria and by fungi, whereas the immune deficiency (Imd) pathway responds to Gram-negative bacterial infection. The basic mechanisms of recognition of these various types of microbial infections by the adult fly are now globally understood. Even though some elements are missing in the intracellular pathways, numerous proteins and interactions have been identified. In this article, we present a general picture of the immune functions of NF-kappaB in Drosophila with all the partners involved in recognition and in the signaling cascades.},
keywords = {Animals, bacteria, Fungi, Gene Expression Regulation, hoffmann, M3i, NF-kappa B},
pubstate = {published},
tppubtype = {article}
}
Mishima Yumiko, Quintin Jessica, Aimanianda Vishukumar, Kellenberger Christine, Coste Franck, Clavaud Cecile, Hetru Charles, Hoffmann Jules A, Latgé Jean-Paul, Ferrandon Dominique, Roussel Alain
The N-terminal domain of Drosophila Gram-negative binding protein 3 (GNBP3) defines a novel family of fungal pattern recognition receptors Article de journal
Dans: J. Biol. Chem., vol. 284, no. 42, p. 28687–28697, 2009, ISSN: 1083-351X.
Résumé | Liens | BibTeX | Étiquettes: Animals, beta-Glucans, Bombyx, Carrier Proteins, Crystallography, ferrandon, Fungal Proteins, Hemolymph, hoffmann, ligands, M3i, Molecular Conformation, Mutagenesis, Polysaccharides, Protein Structure, Secondary, Tertiary, X-Ray
@article{mishima_n-terminal_2009,
title = {The N-terminal domain of Drosophila Gram-negative binding protein 3 (GNBP3) defines a novel family of fungal pattern recognition receptors},
author = {Yumiko Mishima and Jessica Quintin and Vishukumar Aimanianda and Christine Kellenberger and Franck Coste and Cecile Clavaud and Charles Hetru and Jules A Hoffmann and Jean-Paul Latgé and Dominique Ferrandon and Alain Roussel},
doi = {10.1074/jbc.M109.034587},
issn = {1083-351X},
year = {2009},
date = {2009-10-01},
journal = {J. Biol. Chem.},
volume = {284},
number = {42},
pages = {28687--28697},
abstract = {Gram-negative binding protein 3 (GNBP3), a pattern recognition receptor that circulates in the hemolymph of Drosophila, is responsible for sensing fungal infection and triggering Toll pathway activation. Here, we report that GNBP3 N-terminal domain binds to fungi upon identifying long chains of beta-1,3-glucans in the fungal cell wall as a major ligand. Interestingly, this domain fails to interact strongly with short oligosaccharides. The crystal structure of GNBP3-Nter reveals an immunoglobulin-like fold in which the glucan binding site is masked by a loop that is highly conserved among glucan-binding proteins identified in several insect orders. Structure-based mutagenesis experiments reveal an essential role for this occluding loop in discriminating between short and long polysaccharides. The displacement of the occluding loop is necessary for binding and could explain the specificity of the interaction with long chain structured polysaccharides. This represents a novel mechanism for beta-glucan recognition.},
keywords = {Animals, beta-Glucans, Bombyx, Carrier Proteins, Crystallography, ferrandon, Fungal Proteins, Hemolymph, hoffmann, ligands, M3i, Molecular Conformation, Mutagenesis, Polysaccharides, Protein Structure, Secondary, Tertiary, X-Ray},
pubstate = {published},
tppubtype = {article}
}
Fraiture Malou, Baxter Richard H G, Steinert Stefanie, Chelliah Yogarany, Frolet Cécile, Quispe-Tintaya Wilber, Hoffmann Jules A, Blandin Stéphanie A, Levashina Elena A
Two mosquito LRR proteins function as complement control factors in the TEP1-mediated killing of Plasmodium Article de journal
Dans: Cell Host Microbe, vol. 5, no. 3, p. 273–284, 2009, ISSN: 1934-6069.
Résumé | Liens | BibTeX | Étiquettes: Animals, Anopheles, APL1, Biological, blandin, Complement System Proteins, Hemolymph, hoffmann, Immunologic Factors, LRIM1, M3i, Models, Plasmodium, Protein Binding, Proteins, TEP1
@article{fraiture_two_2009,
title = {Two mosquito LRR proteins function as complement control factors in the TEP1-mediated killing of Plasmodium},
author = {Malou Fraiture and Richard H G Baxter and Stefanie Steinert and Yogarany Chelliah and Cécile Frolet and Wilber Quispe-Tintaya and Jules A Hoffmann and Stéphanie A Blandin and Elena A Levashina},
doi = {10.1016/j.chom.2009.01.005},
issn = {1934-6069},
year = {2009},
date = {2009-03-01},
journal = {Cell Host Microbe},
volume = {5},
number = {3},
pages = {273--284},
abstract = {Plasmodium development within Anopheles mosquitoes is a vulnerable step in the parasite transmission cycle, and targeting this step represents a promising strategy for malaria control. The thioester-containing complement-like protein TEP1 and two leucine-rich repeat (LRR) proteins, LRIM1 and APL1, have been identified as major mosquito factors that regulate parasite loads. Here, we show that LRIM1 and APL1 are required for binding of TEP1 to parasites. RNAi silencing of the LRR-encoding genes results in deposition of TEP1 on Anopheles tissues, thereby depleting TEP1 from circulation in the hemolymph and impeding its binding to Plasmodium. LRIM1 and APL1 not only stabilize circulating TEP1, they also stabilize each other prior to their interaction with TEP1. Our results indicate that three major antiparasitic factors in mosquitoes jointly function as a complement-like system in parasite killing, and they reveal a role for LRR proteins as complement control factors.},
keywords = {Animals, Anopheles, APL1, Biological, blandin, Complement System Proteins, Hemolymph, hoffmann, Immunologic Factors, LRIM1, M3i, Models, Plasmodium, Protein Binding, Proteins, TEP1},
pubstate = {published},
tppubtype = {article}
}
Deddouche Safia, Matt Nicolas, Budd Aidan, Mueller Stefanie, Kemp Cordula, Galiana-Arnoux Delphine, Dostert Catherine, Antoniewski Christophe, Hoffmann Jules A, Imler Jean-Luc
The DExD/Ħ-box helicase Dicer-2 mediates the induction of antiviral activity in drosophila Article de journal
Dans: Nature Immunology, vol. 9, no. 12, p. 1425–1432, 2008, ISSN: 1529-2916.
Résumé | Liens | BibTeX | Étiquettes: Amino Acid, Animals, Electrophoresis, Fat Body, Gene Expression Regulation, Genetic, Genetically Modified, hoffmann, Humans, imler, M3i, matt, Phylogeny, Polyacrylamide Gel, Reverse Transcriptase Polymerase Chain Reaction, Ribonuclease III, RNA Helicases, Sequence Homology, Transcription, Virus Diseases
@article{deddouche_dexd/h-box_2008,
title = {The DExD/Ħ-box helicase Dicer-2 mediates the induction of antiviral activity in drosophila},
author = {Safia Deddouche and Nicolas Matt and Aidan Budd and Stefanie Mueller and Cordula Kemp and Delphine Galiana-Arnoux and Catherine Dostert and Christophe Antoniewski and Jules A Hoffmann and Jean-Luc Imler},
doi = {10.1038/ni.1664},
issn = {1529-2916},
year = {2008},
date = {2008-12-01},
journal = {Nature Immunology},
volume = {9},
number = {12},
pages = {1425--1432},
abstract = {Drosophila, like other invertebrates and plants, relies mainly on RNA interference for its defense against viruses. In flies, viral infection also triggers the expression of many genes. One of the genes induced, Vago, encodes a 18-kilodalton cysteine-rich polypeptide. Here we provide genetic evidence that the Vago gene product controlled viral load in the fat body after infection with drosophila C virus. Induction of Vago was dependent on the helicase Dicer-2. Dicer-2 belongs to the same DExD/H-box helicase family as do the RIG-I-like receptors, which sense viral infection and mediate interferon induction in mammals. We propose that this family represents an evolutionary conserved set of sensors that detect viral nucleic acids and direct antiviral responses.},
keywords = {Amino Acid, Animals, Electrophoresis, Fat Body, Gene Expression Regulation, Genetic, Genetically Modified, hoffmann, Humans, imler, M3i, matt, Phylogeny, Polyacrylamide Gel, Reverse Transcriptase Polymerase Chain Reaction, Ribonuclease III, RNA Helicases, Sequence Homology, Transcription, Virus Diseases},
pubstate = {published},
tppubtype = {article}
}
Goto Akira, Matsushita Kazufumi, Gesellchen Viola, Chamy Laure El, Kuttenkeuler David, Takeuchi Osamu, Hoffmann Jules A, Akira Shizuo, Boutros Michael, Reichhart Jean-Marc
Akirins are highly conserved nuclear proteins required for NF-kappaB-dependent gene expression in drosophila and mice Article de journal
Dans: Nat. Immunol., vol. 9, no. 1, p. 97–104, 2008, ISSN: 1529-2916.
Résumé | Liens | BibTeX | Étiquettes: Animals, Cell Line, Embryo, Fibroblasts, hoffmann, Humans, Immunity, Innate, Interleukin-1beta, M3i, Mammalian, Mice, NF-kappa B, Nuclear Proteins, Proteins, reichhart, Signal Transduction, Toll-Like Receptors, transgenic, Tumor Necrosis Factor-alpha
@article{goto_akirins_2008,
title = {Akirins are highly conserved nuclear proteins required for NF-kappaB-dependent gene expression in drosophila and mice},
author = {Akira Goto and Kazufumi Matsushita and Viola Gesellchen and Laure El Chamy and David Kuttenkeuler and Osamu Takeuchi and Jules A Hoffmann and Shizuo Akira and Michael Boutros and Jean-Marc Reichhart},
doi = {10.1038/ni1543},
issn = {1529-2916},
year = {2008},
date = {2008-01-01},
journal = {Nat. Immunol.},
volume = {9},
number = {1},
pages = {97--104},
abstract = {During a genome-wide screen with RNA-mediated interference, we isolated CG8580 as a gene involved in the innate immune response of Drosophila melanogaster. CG8580, which we called Akirin, encoded a protein that acted in parallel with the NF-kappaB transcription factor downstream of the Imd pathway and was required for defense against Gram-negative bacteria. Akirin is highly conserved, and the human genome contains two homologs, one of which was able to rescue the loss-of-function phenotype in drosophila cells. Akirins were strictly localized to the nucleus. Knockout of both Akirin homologs in mice showed that one had an essential function downstream of the Toll-like receptor, tumor necrosis factor and interleukin (IL)-1beta signaling pathways leading to the production of IL-6. Thus, Akirin is a conserved nuclear factor required for innate immune responses.},
keywords = {Animals, Cell Line, Embryo, Fibroblasts, hoffmann, Humans, Immunity, Innate, Interleukin-1beta, M3i, Mammalian, Mice, NF-kappa B, Nuclear Proteins, Proteins, reichhart, Signal Transduction, Toll-Like Receptors, transgenic, Tumor Necrosis Factor-alpha},
pubstate = {published},
tppubtype = {article}
}
Ferrandon Dominique, Imler Jean-Luc, Hetru Charles, Hoffmann Jules A
The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections Article de journal
Dans: Nat Rev Immunol, vol. 7, p. 862–74, 2007.
Résumé | BibTeX | Étiquettes: Animals, Bacterial Infections/*immunology/microbiology, Drosophila melanogaster/genetics/*immunology/microbiology, ferrandon, hoffmann, imler, Immunity, M3i, Mycoses/*immunology/microbiology, Natural/genetics, Signal Transduction/genetics/*immunology
@article{ferrandon_drosophila_2007b,
title = {The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections},
author = {Dominique Ferrandon and Jean-Luc Imler and Charles Hetru and Jules A Hoffmann},
year = {2007},
date = {2007-11-01},
journal = {Nat Rev Immunol},
volume = {7},
pages = {862--74},
abstract = {A hallmark of the potent, multifaceted antimicrobial defence of Drosophila melanogaster is the challenge-induced synthesis of several families of antimicrobial peptides by cells in the fat body. The basic mechanisms of recognition of various types of microbial infections by the adult fly are now understood, often in great detail. We have further gained valuable insight into the infection-induced gene reprogramming by nuclear factor-kappaB (NF-kappaB) family members under the dependence of complex intracellular signalling cascades. The striking parallels between the adult fly response and mammalian innate immune defences described below point to a common ancestry and validate the relevance of the fly defence as a paradigm for innate immunity.},
keywords = {Animals, Bacterial Infections/*immunology/microbiology, Drosophila melanogaster/genetics/*immunology/microbiology, ferrandon, hoffmann, imler, Immunity, M3i, Mycoses/*immunology/microbiology, Natural/genetics, Signal Transduction/genetics/*immunology},
pubstate = {published},
tppubtype = {article}
}
Beutler Bruce, Eidenschenk Celine, Crozat Karine, Imler Jean-Luc, Takeuchi Osamu, Hoffmann Jules A, Akira Shizuo
Genetic analysis of resistance to viral infection Article de journal
Dans: Nature Reviews. Immunology, vol. 7, no. 10, p. 753–766, 2007, ISSN: 1474-1741.
Résumé | Liens | BibTeX | Étiquettes: Animals, Antiviral Agents, Disease Susceptibility, Drug Resistance, Eukaryotic Cells, hoffmann, Humans, imler, Immunity, M3i, Mutation, Viral, Virus Diseases, viruses
@article{beutler_genetic_2007,
title = {Genetic analysis of resistance to viral infection},
author = {Bruce Beutler and Celine Eidenschenk and Karine Crozat and Jean-Luc Imler and Osamu Takeuchi and Jules A Hoffmann and Shizuo Akira},
doi = {10.1038/nri2174},
issn = {1474-1741},
year = {2007},
date = {2007-10-01},
journal = {Nature Reviews. Immunology},
volume = {7},
number = {10},
pages = {753--766},
abstract = {As machines that reprogramme eukaryotic cells to suit their own purposes, viruses present a difficult problem for multicellular hosts, and indeed, have become one of the central pre-occupations of the immune system. Unable to permanently outpace individual viruses in an evolutionary footrace, higher eukaryotes have evolved broadly active mechanisms with which to sense viruses and suppress their proliferation. These mechanisms have recently been elucidated by a combination of forward and reverse genetic methods. Some of these mechanisms are clearly ancient, whereas others are relatively new. All are remarkably adept at discriminating self from non-self, and allow the host to cope with what might seem an impossible predicament.},
keywords = {Animals, Antiviral Agents, Disease Susceptibility, Drug Resistance, Eukaryotic Cells, hoffmann, Humans, imler, Immunity, M3i, Mutation, Viral, Virus Diseases, viruses},
pubstate = {published},
tppubtype = {article}
}
Nehme Nadine T, Liégeois Samuel, Kele Beatrix, Giammarinaro Philippe, Pradel Elizabeth, Hoffmann Jules A, Ewbank Jonathan J, Ferrandon Dominique
A model of bacterial intestinal infections in Drosophila melanogaster Article de journal
Dans: PLoS Pathog., vol. 3, no. 11, p. e173, 2007, ISSN: 1553-7374.
Résumé | Liens | BibTeX | Étiquettes: Animal, Animals, Disease Models, Electron, ferrandon, fluorescence, Hemolymph, hoffmann, Host-Pathogen Interactions, Immunohistochemistry, Intestines, M3i, Microscopy, Reverse Transcriptase Polymerase Chain Reaction, Serratia Infections, Serratia marcescens, Transmission
@article{nehme_model_2007b,
title = {A model of bacterial intestinal infections in Drosophila melanogaster},
author = {Nadine T Nehme and Samuel Liégeois and Beatrix Kele and Philippe Giammarinaro and Elizabeth Pradel and Jules A Hoffmann and Jonathan J Ewbank and Dominique Ferrandon},
doi = {10.1371/journal.ppat.0030173},
issn = {1553-7374},
year = {2007},
date = {2007-01-01},
journal = {PLoS Pathog.},
volume = {3},
number = {11},
pages = {e173},
abstract = {Serratia marcescens is an entomopathogenic bacterium that opportunistically infects a wide range of hosts, including humans. In a model of septic injury, if directly introduced into the body cavity of Drosophila, this pathogen is insensitive to the host's systemic immune response and kills flies in a day. We find that S. marcescens resistance to the Drosophila immune deficiency (imd)-mediated humoral response requires the bacterial lipopolysaccharide O-antigen. If ingested by Drosophila, bacteria cross the gut and penetrate the body cavity. During this passage, the bacteria can be observed within the cells of the intestinal epithelium. In such an oral infection model, the flies succumb to infection only after 6 days. We demonstrate that two complementary host defense mechanisms act together against such food-borne infection: an antimicrobial response in the intestine that is regulated by the imd pathway and phagocytosis by hemocytes of bacteria that have escaped into the hemolymph. Interestingly, bacteria present in the hemolymph elicit a systemic immune response only when phagocytosis is blocked. Our observations support a model wherein peptidoglycan fragments released during bacterial growth activate the imd pathway and do not back a proposed role for phagocytosis in the immune activation of the fat body. Thanks to the genetic tools available in both host and pathogen, the molecular dissection of the interactions between S. marcescens and Drosophila will provide a useful paradigm for deciphering intestinal pathogenesis.},
keywords = {Animal, Animals, Disease Models, Electron, ferrandon, fluorescence, Hemolymph, hoffmann, Host-Pathogen Interactions, Immunohistochemistry, Intestines, M3i, Microscopy, Reverse Transcriptase Polymerase Chain Reaction, Serratia Infections, Serratia marcescens, Transmission},
pubstate = {published},
tppubtype = {article}
}
Gottar Marie, Gobert Vanessa, Matskevich Alexey A, Reichhart Jean-Marc, Wang Chengshu, Butt Tariq M, Belvin Marcia, Hoffmann Jules A, Ferrandon Dominique
Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors Article de journal
Dans: Cell, vol. 127, no. 7, p. 1425–1437, 2006, ISSN: 0092-8674.
Résumé | Liens | BibTeX | Étiquettes: Animals, Antibody Formation, Beauveria, Candida albicans, Carrier Proteins, Cellular, ferrandon, Glucans, hoffmann, Immunity, Immunological, M3i, Metarhizium, Models, Polysaccharides, reichhart, Serine Endopeptidases, Signal Transduction, Virulence Factors
@article{gottar_dual_2006,
title = {Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors},
author = {Marie Gottar and Vanessa Gobert and Alexey A Matskevich and Jean-Marc Reichhart and Chengshu Wang and Tariq M Butt and Marcia Belvin and Jules A Hoffmann and Dominique Ferrandon},
doi = {10.1016/j.cell.2006.10.046},
issn = {0092-8674},
year = {2006},
date = {2006-12-01},
journal = {Cell},
volume = {127},
number = {7},
pages = {1425--1437},
abstract = {The Drosophila immune system discriminates between various types of infections and activates appropriate signal transduction pathways to combat the invading microorganisms. The Toll pathway is required for the host response against fungal and most Gram-positive bacterial infections. The sensing of Gram-positive bacteria is mediated by the pattern recognition receptors PGRP-SA and GNBP1 that cooperate to detect the presence of infections in the host. Here, we report that GNBP3 is a pattern recognition receptor that is required for the detection of fungal cell wall components. Strikingly, we find that there is a second, parallel pathway acting jointly with GNBP3. The Drosophila Persephone protease activates the Toll pathway when proteolytically matured by the secreted fungal virulence factor PR1. Thus, the detection of fungal infections in Drosophila relies both on the recognition of invariant microbial patterns and on monitoring the effects of virulence factors on the host.},
keywords = {Animals, Antibody Formation, Beauveria, Candida albicans, Carrier Proteins, Cellular, ferrandon, Glucans, hoffmann, Immunity, Immunological, M3i, Metarhizium, Models, Polysaccharides, reichhart, Serine Endopeptidases, Signal Transduction, Virulence Factors},
pubstate = {published},
tppubtype = {article}
}
Shiao Shin-Hong, Whitten Miranda M A, Zachary Daniel, Hoffmann Jules A, Levashina Elena A
Fz2 and cdc42 mediate melanization and actin polymerization but are dispensable for Plasmodium killing in the mosquito midgut Article de journal
Dans: PLoS Pathog., vol. 2, no. 12, p. e133, 2006, ISSN: 1553-7374.
Résumé | Liens | BibTeX | Étiquettes: Actins, Animals, Anopheles, Carrier Proteins, cdc42 GTP-Binding Protein, Double-Stranded, Electron, Frizzled Receptors, Gastrointestinal Tract, hoffmann, Host-Parasite Interactions, Immunity, Innate, Insect Vectors, Intestinal Mucosa, M3i, Melanins, Microarray Analysis, Microscopy, Plasmodium berghei, Polymers, Protozoan, RNA, scanning, telomerase
@article{shiao_fz2_2006,
title = {Fz2 and cdc42 mediate melanization and actin polymerization but are dispensable for Plasmodium killing in the mosquito midgut},
author = {Shin-Hong Shiao and Miranda M A Whitten and Daniel Zachary and Jules A Hoffmann and Elena A Levashina},
doi = {10.1371/journal.ppat.0020133},
issn = {1553-7374},
year = {2006},
date = {2006-12-01},
journal = {PLoS Pathog.},
volume = {2},
number = {12},
pages = {e133},
abstract = {The midgut epithelium of the mosquito malaria vector Anopheles is a hostile environment for Plasmodium, with most parasites succumbing to host defenses. This study addresses morphological and ultrastructural features associated with Plasmodium berghei ookinete invasion in Anopheles gambiae midguts to define the sites and possible mechanisms of parasite killing. We show by transmission electron microscopy and immunofluorescence that the majority of ookinetes are killed in the extracellular space. Dead or dying ookinetes are surrounded by a polymerized actin zone formed within the basal cytoplasm of adjacent host epithelial cells. In refractory strain mosquitoes, we found that formation of this zone is strongly linked to prophenoloxidase activation leading to melanization. Furthermore, we identify two factors controlling both phenomena: the transmembrane receptor frizzled-2 and the guanosine triphosphate-binding protein cell division cycle 42. However, the disruption of actin polymerization and melanization by double-stranded RNA inhibition did not affect ookinete survival. Our results separate the mechanisms of parasite killing from subsequent reactions manifested by actin polymerization and prophenoloxidase activation in the A. gambiae-P. berghei model. These latter processes are reminiscent of wound healing in other organisms, and we propose that they represent a form of wound-healing response directed towards a moribund ookinete, which is perceived as damaged tissue.},
keywords = {Actins, Animals, Anopheles, Carrier Proteins, cdc42 GTP-Binding Protein, Double-Stranded, Electron, Frizzled Receptors, Gastrointestinal Tract, hoffmann, Host-Parasite Interactions, Immunity, Innate, Insect Vectors, Intestinal Mucosa, M3i, Melanins, Microarray Analysis, Microscopy, Plasmodium berghei, Polymers, Protozoan, RNA, scanning, telomerase},
pubstate = {published},
tppubtype = {article}
}
Frolet Cécile, Thoma Martine, Blandin Stéphanie A, Hoffmann Jules A, Levashina Elena A
Boosting NF-kappaB-dependent basal immunity of Anopheles gambiae aborts development of Plasmodium berghei Article de journal
Dans: Immunity, vol. 25, no. 4, p. 677–685, 2006, ISSN: 1074-7613.
Résumé | Liens | BibTeX | Étiquettes: Animals, Anopheles gambiae, blandin, Gene Expression, Gene Expression Regulation, Genes, hoffmann, Immunity, Insect, M3i, NF-kappa B, Plasmodium berghei, telomerase
@article{frolet_boosting_2006,
title = {Boosting NF-kappaB-dependent basal immunity of Anopheles gambiae aborts development of Plasmodium berghei},
author = {Cécile Frolet and Martine Thoma and Stéphanie A Blandin and Jules A Hoffmann and Elena A Levashina},
url = {http://www.ncbi.nlm.nih.gov/pubmed/17045818},
doi = {10.1016/j.immuni.2006.08.019},
issn = {1074-7613},
year = {2006},
date = {2006-10-01},
journal = {Immunity},
volume = {25},
number = {4},
pages = {677--685},
abstract = {Anopheles gambiae, the major vector for the protozoan malaria parasite Plasmodium falciparum, mounts powerful antiparasitic responses that cause marked parasite loss during midgut invasion. Here, we showed that these antiparasitic defenses were composed of pre- and postinvasion phases and that the preinvasion phase was predominantly regulated by Rel1 and Rel2 members of the NF-kappaB transcription factors. Concurrent silencing of Rel1 and Rel2 decreased the basal expression of the major antiparasitic genes TEP1 and LRIM1 and abolished resistance of Anopheles to the rodent malaria parasite P. berghei. Conversely, depletion of a negative regulator of Rel1, Cactus, prior to infection, enhanced the basal expression of TEP1 and of other immune factors and completely prevented parasite development. Our findings uncover the crucial role of the preinvasion defense in the elimination of parasites, which is at least in part based on circulating blood molecules.},
keywords = {Animals, Anopheles gambiae, blandin, Gene Expression, Gene Expression Regulation, Genes, hoffmann, Immunity, Insect, M3i, NF-kappa B, Plasmodium berghei, telomerase},
pubstate = {published},
tppubtype = {article}
}
Galiana-Arnoux Delphine, Dostert Catherine, Schneemann Anette, Hoffmann Jules A, Imler Jean-Luc
Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila Article de journal
Dans: Nature Immunology, vol. 7, no. 6, p. 590–597, 2006, ISSN: 1529-2908.
Résumé | Liens | BibTeX | Étiquettes: Animals, Genetically Modified, hoffmann, imler, M3i, Mutation, Nodaviridae, Ribonuclease III, RNA, RNA Helicases, RNA Interference, RNA Viruses, Viral, Viral Proteins, Virus Replication
@article{galiana-arnoux_essential_2006,
title = {Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila},
author = {Delphine Galiana-Arnoux and Catherine Dostert and Anette Schneemann and Jules A Hoffmann and Jean-Luc Imler},
doi = {10.1038/ni1335},
issn = {1529-2908},
year = {2006},
date = {2006-06-01},
journal = {Nature Immunology},
volume = {7},
number = {6},
pages = {590--597},
abstract = {The fruit fly Drosophila melanogaster is a model system for studying innate immunity, including antiviral host defense. Infection with drosophila C virus triggers a transcriptional response that is dependent in part on the Jak kinase Hopscotch. Here we show that successful infection and killing of drosophila with the insect nodavirus flock house virus was strictly dependent on expression of the viral protein B2, a potent inhibitor of processing of double-stranded RNA mediated by the essential RNA interference factor Dicer. Conversely, flies with a loss-of-function mutation in the gene encoding Dicer-2 (Dcr-2) showed enhanced susceptibility to infection by flock house virus, drosophila C virus and Sindbis virus, members of three different families of RNA viruses. These data demonstrate the importance of RNA interference for controlling virus replication in vivo and establish Dcr-2 as a host susceptibility locus for virus infections.},
keywords = {Animals, Genetically Modified, hoffmann, imler, M3i, Mutation, Nodaviridae, Ribonuclease III, RNA, RNA Helicases, RNA Interference, RNA Viruses, Viral, Viral Proteins, Virus Replication},
pubstate = {published},
tppubtype = {article}
}
Bischoff Vincent, Vignal Cécile, Duvic Bernard, Boneca Ivo G, Hoffmann Jules A, Royet Julien
Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2 Article de journal
Dans: PLoS Pathog., vol. 2, no. 2, p. e14, 2006, ISSN: 1553-7374.
Résumé | Liens | BibTeX | Étiquettes: Animals, Antimicrobial Cationic Peptides, bacteria, Carrier Proteins, Down-Regulation, hoffmann, Larva, M3i, RNA Interference, Signal Transduction
@article{bischoff_downregulation_2006,
title = {Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2},
author = {Vincent Bischoff and Cécile Vignal and Bernard Duvic and Ivo G Boneca and Jules A Hoffmann and Julien Royet},
doi = {10.1371/journal.ppat.0020014},
issn = {1553-7374},
year = {2006},
date = {2006-02-01},
journal = {PLoS Pathog.},
volume = {2},
number = {2},
pages = {e14},
abstract = {Peptidoglycan-recognition proteins (PGRPs) are evolutionarily conserved molecules that are structurally related to bacterial amidases. Several Drosophila PGRPs have lost this enzymatic activity and serve as microbe sensors through peptidoglycan recognition. Other PGRP family members, such as Drosophila PGRP-SC1 or mammalian PGRP-L, have conserved the amidase function and are able to cleave peptidoglycan in vitro. However, the contribution of these amidase PGRPs to host defense in vivo has remained elusive so far. Using an RNA-interference approach, we addressed the function of two PGRPs with amidase activity in the Drosophila immune response. We observed that PGRP-SC1/2-depleted flies present a specific over-activation of the IMD (immune deficiency) signaling pathway after bacterial challenge. Our data suggest that these proteins act in the larval gut to prevent activation of this pathway following bacterial ingestion. We further show that a strict control of IMD-pathway activation is essential to prevent bacteria-induced developmental defects and larval death.},
keywords = {Animals, Antimicrobial Cationic Peptides, bacteria, Carrier Proteins, Down-Regulation, hoffmann, Larva, M3i, RNA Interference, Signal Transduction},
pubstate = {published},
tppubtype = {article}
}
Leclerc Vincent, Pelte Nadège, Chamy Laure El, Martinelli Cosimo, Ligoxygakis Petros, Hoffmann Jules A, Reichhart Jean-Marc
Prophenoloxidase activation is not required for survival to microbial infections in Drosophila Article de journal
Dans: EMBO Rep., vol. 7, no. 2, p. 231–235, 2006, ISSN: 1469-221X.
Résumé | Liens | BibTeX | Étiquettes: Animals, Bacterial Infections, Catechol Oxidase, Enzyme Activation, Enzyme Precursors, Gram-Negative Bacteria, Gram-Positive Bacteria, Hemolymph, hoffmann, Immunity, Innate, M3i, Mutation, reichhart, Survival Rate
@article{leclerc_prophenoloxidase_2006,
title = {Prophenoloxidase activation is not required for survival to microbial infections in Drosophila},
author = {Vincent Leclerc and Nadège Pelte and Laure El Chamy and Cosimo Martinelli and Petros Ligoxygakis and Jules A Hoffmann and Jean-Marc Reichhart},
doi = {10.1038/sj.embor.7400592},
issn = {1469-221X},
year = {2006},
date = {2006-02-01},
journal = {EMBO Rep.},
volume = {7},
number = {2},
pages = {231--235},
abstract = {The antimicrobial defence of Drosophila relies on cellular and humoral processes, of which the inducible synthesis of antimicrobial peptides has attracted interest in recent years. Another potential line of defence is the activation, by a proteolytic cascade, of phenoloxidase, which leads to the production of quinones and melanin. However, in spite of several publications on this subject, the contribution of phenoloxidase activation to resistance to infections has not been established under appropriate in vivo conditions. Here, we have isolated the first Drosophila mutant for a prophenoloxidase-activating enzyme (PAE1). In contrast to wild-type flies, PAE1 mutants fail to activate phenoloxidase in the haemolymph following microbial challenge. Surprisingly, we find that these mutants are as resistant to infections as wild-type flies, in the total absence of circulating phenoloxidase activity. This raises the question with regard to the precise function of phenoloxidase activation in defence, if any.},
keywords = {Animals, Bacterial Infections, Catechol Oxidase, Enzyme Activation, Enzyme Precursors, Gram-Negative Bacteria, Gram-Positive Bacteria, Hemolymph, hoffmann, Immunity, Innate, M3i, Mutation, reichhart, Survival Rate},
pubstate = {published},
tppubtype = {article}
}
Kocks Christine, Cho Ju Hyun, Nehme Nadine, Ulvila Johanna, Pearson Alan M, Meister Marie, Strom Charles, Conto Stephanie L, Hetru Charles, Stuart Lynda M, Stehle Thilo, Hoffmann Jules A, Reichhart Jean-Marc, Ferrandon Dominique, Rämet Mika, Ezekowitz Alan R B
Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila Article de journal
Dans: Cell, vol. 123, no. 2, p. 335–346, 2005, ISSN: 0092-8674.
Résumé | Liens | BibTeX | Étiquettes: Amino Acid, Amino Acid Motifs, Animals, Bacterial Infections, Cell Surface, Embryo, Escherichia coli, ferrandon, Flow Cytometry, Frameshift Mutation, Genes, Histidine, hoffmann, In Situ Hybridization, Insect, Insect Proteins, M3i, Macrophages, Membrane Proteins, messenger, Nonmammalian, Open Reading Frames, Phagocytosis, Receptors, reichhart, RNA, RNA Interference, Sequence Homology, Serratia marcescens
@article{kocks_eater_2005,
title = {Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila},
author = {Christine Kocks and Ju Hyun Cho and Nadine Nehme and Johanna Ulvila and Alan M Pearson and Marie Meister and Charles Strom and Stephanie L Conto and Charles Hetru and Lynda M Stuart and Thilo Stehle and Jules A Hoffmann and Jean-Marc Reichhart and Dominique Ferrandon and Mika Rämet and Alan R B Ezekowitz},
doi = {10.1016/j.cell.2005.08.034},
issn = {0092-8674},
year = {2005},
date = {2005-10-01},
journal = {Cell},
volume = {123},
number = {2},
pages = {335--346},
abstract = {Phagocytosis is a complex, evolutionarily conserved process that plays a central role in host defense against infection. We have identified a predicted transmembrane protein, Eater, which is involved in phagocytosis in Drosophila. Transcriptional silencing of the eater gene in a macrophage cell line led to a significant reduction in the binding and internalization of bacteria. Moreover, the N terminus of the Eater protein mediated direct microbial binding which could be inhibited with scavenger receptor ligands, acetylated, and oxidized low-density lipoprotein. In vivo, eater expression was restricted to blood cells. Flies lacking the eater gene displayed normal responses in NF-kappaB-like Toll and IMD signaling pathways but showed impaired phagocytosis and decreased survival after bacterial infection. Our results suggest that Eater is a major phagocytic receptor for a broad range of bacterial pathogens in Drosophila and provide a powerful model to address the role of phagocytosis in vivo.},
keywords = {Amino Acid, Amino Acid Motifs, Animals, Bacterial Infections, Cell Surface, Embryo, Escherichia coli, ferrandon, Flow Cytometry, Frameshift Mutation, Genes, Histidine, hoffmann, In Situ Hybridization, Insect, Insect Proteins, M3i, Macrophages, Membrane Proteins, messenger, Nonmammalian, Open Reading Frames, Phagocytosis, Receptors, reichhart, RNA, RNA Interference, Sequence Homology, Serratia marcescens},
pubstate = {published},
tppubtype = {article}
}
Irving Phil, Ubeda Jean-Michel, Doucet Daniel, Troxler Laurent, Lagueux Marie, Zachary Daniel, Hoffmann Jules A, Hetru Charles, Meister Marie
New insights into Drosophila larval haemocyte functions through genome-wide analysis Article de journal
Dans: Cell. Microbiol., vol. 7, no. 3, p. 335–350, 2005, ISSN: 1462-5814.
Résumé | Liens | BibTeX | Étiquettes: Animals, bioinformatic, Catechol Oxidase, Cell Lineage, Enzyme Precursors, Escherichia coli, Fat Body, Gene Expression Profiling, Genome, Hemocytes, hoffmann, Integrin alpha Chains, Integrins, Larva, M3i, Micrococcus luteus
@article{irving_new_2005,
title = {New insights into Drosophila larval haemocyte functions through genome-wide analysis},
author = {Phil Irving and Jean-Michel Ubeda and Daniel Doucet and Laurent Troxler and Marie Lagueux and Daniel Zachary and Jules A Hoffmann and Charles Hetru and Marie Meister},
doi = {10.1111/j.1462-5822.2004.00462.x},
issn = {1462-5814},
year = {2005},
date = {2005-03-01},
journal = {Cell. Microbiol.},
volume = {7},
number = {3},
pages = {335--350},
abstract = {Drosophila blood cells or haemocytes comprise three cell lineages, plasmatocytes, crystal cells and lamellocytes, involved in immune functions such as phagocytosis, melanisation and encapsulation. Transcriptional profiling of activities of distinct haemocyte populations and from naive or infected larvae, was performed to find genes contributing to haemocyte functions. Of the 13 000 genes represented on the microarray, over 2500 exhibited significantly enriched transcription in haemocytes. Among these were genes encoding integrins, peptidoglycan recognition proteins (PGRPs), scavenger receptors, lectins, cell adhesion molecules and serine proteases. One relevant outcome of this analysis was the gain of new insights into the lamellocyte encapsulation process. We showed that lamellocytes require betaPS integrin for encapsulation and that they transcribe one prophenoloxidase gene enabling them to produce the enzyme necessary for melanisation of the capsule. A second compelling observation was that following infection, the gene encoding the cytokine Spatzle was uniquely upregulated in haemocytes and not the fat body. This shows that Drosophila haemocytes produce a signal molecule ready to be activated through cleavage after pathogen recognition, informing distant tissues of infection.},
keywords = {Animals, bioinformatic, Catechol Oxidase, Cell Lineage, Enzyme Precursors, Escherichia coli, Fat Body, Gene Expression Profiling, Genome, Hemocytes, hoffmann, Integrin alpha Chains, Integrins, Larva, M3i, Micrococcus luteus},
pubstate = {published},
tppubtype = {article}
}
Royet Julien, Reichhart Jean-Marc, Hoffmann Jules A
Sensing and signaling during infection in Drosophila Article de journal
Dans: Curr. Opin. Immunol., vol. 17, no. 1, p. 11–17, 2005, ISSN: 0952-7915.
Résumé | Liens | BibTeX | Étiquettes: Animals, Antimicrobial Cationic Peptides, Bacterial Infections, Gene Expression Regulation, Genome, hoffmann, Immunity, Innate, M3i, reichhart, Signal Transduction
@article{royet_sensing_2005,
title = {Sensing and signaling during infection in Drosophila},
author = {Julien Royet and Jean-Marc Reichhart and Jules A Hoffmann},
doi = {10.1016/j.coi.2004.12.002},
issn = {0952-7915},
year = {2005},
date = {2005-02-01},
journal = {Curr. Opin. Immunol.},
volume = {17},
number = {1},
pages = {11--17},
abstract = {Most of the progress in dissecting the Drosophila antimicrobial response over the past decade has centered around intracellular signaling pathways in immune response tissues and expression of genes encoding antimicrobial peptide genes. The past few years, however, have witnessed significant advances in our understanding of the recognition of microbial invaders and subsequent activation of signaling cascades. In particular, the roles of peptidoglycan recognition proteins, which have known homologues in mammals, have been recognized and examined at the structural and functional levels.},
keywords = {Animals, Antimicrobial Cationic Peptides, Bacterial Infections, Gene Expression Regulation, Genome, hoffmann, Immunity, Innate, M3i, reichhart, Signal Transduction},
pubstate = {published},
tppubtype = {article}
}
Dostert Catherine, Jouanguy Emmanuelle, Irving Phil, Troxler Laurent, Galiana-Arnoux Delphine, Hetru Charles, Hoffmann Jules A, Imler Jean-Luc
The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila Article de journal
Dans: Nature Immunology, vol. 6, no. 9, p. 946–953, 2005, ISSN: 1529-2908.
Résumé | Liens | BibTeX | Étiquettes: Animals, bioinformatic, DNA-Binding Proteins, Genetic, Genetically Modified, hoffmann, imler, Insect Viruses, Janus Kinase 1, M3i, Male, Oligonucleotide Array Sequence Analysis, Promoter Regions, Protein-Tyrosine Kinases, Signal Transduction, STAT1 Transcription Factor, Trans-Activators
@article{dostert_jak-stat_2005,
title = {The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila},
author = {Catherine Dostert and Emmanuelle Jouanguy and Phil Irving and Laurent Troxler and Delphine Galiana-Arnoux and Charles Hetru and Jules A Hoffmann and Jean-Luc Imler},
doi = {10.1038/ni1237},
issn = {1529-2908},
year = {2005},
date = {2005-01-01},
journal = {Nature Immunology},
volume = {6},
number = {9},
pages = {946--953},
abstract = {The response of drosophila to bacterial and fungal infections involves two signaling pathways, Toll and Imd, which both activate members of the transcription factor NF-kappaB family. Here we have studied the global transcriptional response of flies to infection with drosophila C virus. Viral infection induced a set of genes distinct from those regulated by the Toll or Imd pathways and triggered a signal transducer and activator of transcription (STAT) DNA-binding activity. Genetic experiments showed that the Jak kinase Hopscotch was involved in the control of the viral load in infected flies and was required but not sufficient for the induction of some virus-regulated genes. Our results indicate that in addition to Toll and Imd, a third, evolutionary conserved innate immunity pathway functions in drosophila and counters viral infection.},
keywords = {Animals, bioinformatic, DNA-Binding Proteins, Genetic, Genetically Modified, hoffmann, imler, Insect Viruses, Janus Kinase 1, M3i, Male, Oligonucleotide Array Sequence Analysis, Promoter Regions, Protein-Tyrosine Kinases, Signal Transduction, STAT1 Transcription Factor, Trans-Activators},
pubstate = {published},
tppubtype = {article}
}
Bischoff Vincent, Vignal Cécile, Boneca Ivo G, Michel Tatiana, Hoffmann Jules A, Royet Julien
Function of the drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria Article de journal
Dans: Nat. Immunol., vol. 5, no. 11, p. 1175–1180, 2004, ISSN: 1529-2908.
Résumé | Liens | BibTeX | Étiquettes: Animals, Carrier Proteins, Cell Surface, Gram-Positive Bacteria, Gram-Positive Bacterial Infections, hoffmann, M3i, Mutation, Mycoses, Receptors, Staphylococcus aureus, Toll-Like Receptors
@article{bischoff_function_2004,
title = {Function of the drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria},
author = {Vincent Bischoff and Cécile Vignal and Ivo G Boneca and Tatiana Michel and Jules A Hoffmann and Julien Royet},
doi = {10.1038/ni1123},
issn = {1529-2908},
year = {2004},
date = {2004-11-01},
journal = {Nat. Immunol.},
volume = {5},
number = {11},
pages = {1175--1180},
abstract = {The activation of an immune response requires recognition of microorganisms by host receptors. In drosophila, detection of Gram-positive bacteria is mediated by cooperation between the peptidoglycan-recognition protein-SA (PGRP-SA) and Gram-negative binding protein 1 (GNBP1) proteins. Here we show that some Gram-positive bacterial species activate an immune response in a PGRP-SA- and GNBP1-independent manner, indicating that alternative receptors exist. Consistent with this, we noted that PGRP-SD mutants were susceptible to some Gram-positive bacteria and that a loss-of-function mutation in PGRP-SD severely exacerbated the PGRP-SA and GNBP1 mutant phenotypes. These data indicate that PGRP-SD can function as a receptor for Gram-positive bacteria and shows partial redundancy with the PGRP-SA-GNBP1 complex.},
keywords = {Animals, Carrier Proteins, Cell Surface, Gram-Positive Bacteria, Gram-Positive Bacterial Infections, hoffmann, M3i, Mutation, Mycoses, Receptors, Staphylococcus aureus, Toll-Like Receptors},
pubstate = {published},
tppubtype = {article}
}
Levy Francine, Rabel David, Charlet Maurice, Bulet Philippe, Hoffmann Jules A, Ehret-Sabatier Laurence
Peptidomic and proteomic analyses of the systemic immune response of Drosophila Article de journal
Dans: Biochimie, vol. 86, no. 9-10, p. 607–616, 2004, ISSN: 0300-9084.
Résumé | Liens | BibTeX | Étiquettes: Animals, hoffmann, Immunity, M3i, proteomics
@article{levy_peptidomic_2004,
title = {Peptidomic and proteomic analyses of the systemic immune response of Drosophila},
author = {Francine Levy and David Rabel and Maurice Charlet and Philippe Bulet and Jules A Hoffmann and Laurence Ehret-Sabatier},
doi = {10.1016/j.biochi.2004.07.007},
issn = {0300-9084},
year = {2004},
date = {2004-10-01},
journal = {Biochimie},
volume = {86},
number = {9-10},
pages = {607--616},
abstract = {Insects have developed an efficient host defense against microorganisms, which involves humoral and cellular mechanisms. Numerous data highlight similarities between defense responses of insects and innate immunity of mammals. The fruit fly, Drosophila melanogaster, is a favorable model system for the analysis of the first line defense against microorganisms. Taking advantages of improvements in mass spectrometry (MS), two-dimensional (2D) gel electrophoresis and bioinformatics, differential analyses of blood content (hemolymph) from immune-challenged versus control Drosophila were performed. Two strategies were developed: (i) peptidomic analyses through matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS and high performance liquid chromatography for molecules below 15 kDa, and (ii) proteomic studies based on 2D gel electrophoresis, MALDI-TOF fingerprinting and database searches, for compounds of greater molecular masses. The peptidomic strategy led to the detection of a large number of peptides induced in the hemolymph of challenged flies as compared to controls. Of these, 28 were characterized, amongst which were antimicrobial peptides. The 2D gel electrophoresis strategy led to the detection of 70 spots differentially regulated by at least fivefold after microbial infection. This approach yielded the identity of a series of proteins that were related to the Drosophila immune response, such as proteases, protease inhibitors, prophenoloxydase-activating enzymes, serpins and a Gram-negative binding protein-like protein. This strategy also brought to light new candidates with a potential function in the immune response (odorant-binding protein, peptidylglycine alpha-hydroxylating monooxygenase and transferrin). Interestingly, several molecules resulting from the cleavage of proteins were detected after a fungal infection. Together, peptidomic and proteomic analyses represent new tools to characterize molecules involved in the innate immune reactions of Drosophila.},
keywords = {Animals, hoffmann, Immunity, M3i, proteomics},
pubstate = {published},
tppubtype = {article}
}
Ferrandon Dominique, Imler Jean-Luc, Hoffmann Jules A
Sensing infection in Drosophila: Toll and beyond Article de journal
Dans: Semin Immunol, vol. 16, p. 43–53, 2004, ISSN: 1044-5323.
Résumé | BibTeX | Étiquettes: Animals, Carrier Proteins/chemistry/immunology/physiology, Cell Surface/immunology/*physiology, Drosophila Proteins/chemistry/immunology/*physiology, Drosophila/genetics/*immunology/microbiology, ferrandon, Fungi/immunology, Gene Expression Regulation, Gram-Negative Bacterial Infections/immunology, Gram-Positive Bacterial Infections/immunology, hoffmann, imler, Immunological, Insect Proteins/chemistry/immunology/physiology, M3i, Models, Non-U.S. Gov't, Receptors, Signal Transduction/immunology/physiology, Support
@article{ferrandon_sensing_2004b,
title = {Sensing infection in Drosophila: Toll and beyond},
author = {Dominique Ferrandon and Jean-Luc Imler and Jules A Hoffmann},
issn = {1044-5323},
year = {2004},
date = {2004-01-01},
journal = {Semin Immunol},
volume = {16},
pages = {43--53},
abstract = {Drosophila has evolved a potent immune system that is somewhat adapted to the nature of infections through the selective activation of either one of two NF-kappa B-like signalling pathways, the Toll and IMD (Immune deficiency) pathways. In contrast to the mammalian system, the Toll receptor does not act as a pattern recognition receptor (PRR) but as a cytokine receptor. The sensing of microbial infections is achieved by at least four PRRs that belong to two distinct families: the peptidoglycan recognition proteins (PGRPs) and the Gram-negative binding proteins (GNBPs)/beta-glucan recognition proteins (beta GRPs).},
keywords = {Animals, Carrier Proteins/chemistry/immunology/physiology, Cell Surface/immunology/*physiology, Drosophila Proteins/chemistry/immunology/*physiology, Drosophila/genetics/*immunology/microbiology, ferrandon, Fungi/immunology, Gene Expression Regulation, Gram-Negative Bacterial Infections/immunology, Gram-Positive Bacterial Infections/immunology, hoffmann, imler, Immunological, Insect Proteins/chemistry/immunology/physiology, M3i, Models, Non-U.S. Gov't, Receptors, Signal Transduction/immunology/physiology, Support},
pubstate = {published},
tppubtype = {article}
}
Imler Jean-Luc, Ferrandon Dominique, Royet Julien, Reichhart Jean-Marc, Hetru Charles, Hoffmann Jules A
Toll-dependent and Toll-independent immune responses in Drosophila Article de journal
Dans: Journal of Endotoxin Research, vol. 10, no. 4, p. 241–246, 2004, ISSN: 0968-0519.
Résumé | Liens | BibTeX | Étiquettes: Acute-Phase Proteins, Animals, Blood Proteins, Cell Surface, ferrandon, hoffmann, imler, Insect Proteins, M3i, Membrane Glycoproteins, Receptors, reichhart, Toll-Like Receptor 5, Toll-Like Receptors, Up-Regulation
@article{imler_toll-dependent_2004,
title = {Toll-dependent and Toll-independent immune responses in Drosophila},
author = {Jean-Luc Imler and Dominique Ferrandon and Julien Royet and Jean-Marc Reichhart and Charles Hetru and Jules A Hoffmann},
doi = {10.1179/096805104225005887},
issn = {0968-0519},
year = {2004},
date = {2004-01-01},
journal = {Journal of Endotoxin Research},
volume = {10},
number = {4},
pages = {241--246},
abstract = {The multifaceted response of the fruitfly Drosophila melanogaster to infection by a wide range of microbes is complex and remarkably efficient. Its most prominent aspect is the immune-inducible expression of a set of potent antimicrobial peptides. Genetic analysis of the regulation of the genes encoding these peptides has led to the identification of the receptor Toll as an essential component of the fly's host defense system. In addition, these studies have revealed that the response to Gram-negative bacterial infections involves Toll-independent mechanisms, and that the sensing of infection involves two structurally distinct sets of molecules--the PGRPs and the GNBPs/betaGRPs.},
keywords = {Acute-Phase Proteins, Animals, Blood Proteins, Cell Surface, ferrandon, hoffmann, imler, Insect Proteins, M3i, Membrane Glycoproteins, Receptors, reichhart, Toll-Like Receptor 5, Toll-Like Receptors, Up-Regulation},
pubstate = {published},
tppubtype = {article}
}
Gobert Vanessa, Gottar Marie, Matskevich Alexey A, Rutschmann Sophie, Royet Julien, Belvin Marcia, Hoffmann Jules A, Ferrandon Dominique
Dual activation of the Drosophila toll pathway by two pattern recognition receptors Article de journal
Dans: Science, vol. 302, no. 5653, p. 2126–2130, 2003, ISSN: 1095-9203.
Résumé | Liens | BibTeX | Étiquettes: Animals, Carrier Proteins, Cell Surface, DNA Transposable Elements, ferrandon, Gene Expression, Genes, Gram-Negative Bacteria, Gram-Positive Bacteria, Hemolymph, hoffmann, Hypocreales, Insect, Insect Proteins, M3i, Mutation, Phenotype, Receptors, Serine Endopeptidases, Toll-Like Receptors
@article{gobert_dual_2003,
title = {Dual activation of the Drosophila toll pathway by two pattern recognition receptors},
author = {Vanessa Gobert and Marie Gottar and Alexey A Matskevich and Sophie Rutschmann and Julien Royet and Marcia Belvin and Jules A Hoffmann and Dominique Ferrandon},
doi = {10.1126/science.1085432},
issn = {1095-9203},
year = {2003},
date = {2003-12-01},
journal = {Science},
volume = {302},
number = {5653},
pages = {2126--2130},
abstract = {The Toll-dependent defense against Gram-positive bacterial infections in Drosophila is mediated through the peptidoglycan recognition protein SA (PGRP-SA). A mutation termed osiris disrupts the Gram-negative binding protein 1 (GNBP1) gene and leads to compromised survival of mutant flies after Gram-positive infections, but not after fungal or Gram-negative bacterial challenge. Our results demonstrate that GNBP1 and PGRP-SA can jointly activate the Toll pathway. The potential for a combination of distinct proteins to mediate detection of infectious nonself in the fly will refine the concept of pattern recognition in insects.},
keywords = {Animals, Carrier Proteins, Cell Surface, DNA Transposable Elements, ferrandon, Gene Expression, Genes, Gram-Negative Bacteria, Gram-Positive Bacteria, Hemolymph, hoffmann, Hypocreales, Insect, Insect Proteins, M3i, Mutation, Phenotype, Receptors, Serine Endopeptidases, Toll-Like Receptors},
pubstate = {published},
tppubtype = {article}
}
Thouzeau Cécile, Maho Yvon