Schenckbecher E, Bec G, Sakamoto T, Meyer B, Ennifar E
Biophysical Studies of the Binding of Viral RNA with the 80S Ribosome Using switchSENSE Article de journal
Dans: Methods Mol Biol, vol. 2263, p. 341-350, 2021, ISBN: 33877606, (1940-6029 (Electronic) 1064-3745 (Linking) Journal Article).
Résumé | Liens | BibTeX | Étiquettes: Biophysics, ENNIFAR, Kinetics, Ribosome, RNA, switchSENSE, Unité ARN
@article{,
title = {Biophysical Studies of the Binding of Viral RNA with the 80S Ribosome Using switchSENSE},
author = {E Schenckbecher and G Bec and T Sakamoto and B Meyer and E Ennifar},
url = {http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=33877606},
doi = {10.1007/978-1-0716-1197-5_15},
isbn = {33877606},
year = {2021},
date = {2021-01-01},
journal = {Methods Mol Biol},
volume = {2263},
pages = {341-350},
abstract = {Translation initiation, in both eukaryotes and bacteria, requires essential elements such as mRNA, ribosome, initiator tRNA, and a set of initiation factors. For each domain of life, canonical mechanisms and signals are observed to initiate protein synthesis. However, other initiation mechanism can be used, especially in viral mRNAs. Some viruses hijack cellular machinery to translate some of their mRNAs through a noncanonical initiation pathway using internal ribosome entry site (IRES), a highly structured RNAs which can directly recruit the ribosome with a restricted set of initiation factors, and in some cases even without cap and initiator tRNA. In this chapter, we describe the use of biosensors relying on electro-switchable nanolevers using the switchSENSE((R)) technology, to investigate kinetics of the intergenic (IGR) IRES of the cricket paralysis virus (CrPV) binding to 80S yeast ribosome. This study provides a proof of concept for the application of this method on large complexes.},
note = {1940-6029 (Electronic)
1064-3745 (Linking)
Journal Article},
keywords = {Biophysics, ENNIFAR, Kinetics, Ribosome, RNA, switchSENSE, Unité ARN},
pubstate = {published},
tppubtype = {article}
}
Whisstock James C, Silverman Gary A, Bird Phillip I, Bottomley Stephen P, Kaiserman Dion, Luke Cliff J, Pak Stephen C, Reichhart Jean-Marc, Huntington James A
Serpins flex their muscle: II. Structural insights into target peptidase recognition, polymerization, and transport functions Article de journal
Dans: J. Biol. Chem., vol. 285, non 32, p. 24307–24312, 2010, ISSN: 1083-351X.
Résumé | Liens | BibTeX | Étiquettes: Animals, Biological, Biological Transport, Biophysics, Catalytic Domain, Hormones, Humans, Kinetics, M3i, Models, Peptide Hydrolases, Protein Binding, Protein Conformation, Protein Structure, reichhart, Serpins, Substrate Specificity, Tertiary, Thrombin
@article{whisstock_serpins_2010,
title = {Serpins flex their muscle: II. Structural insights into target peptidase recognition, polymerization, and transport functions},
author = {James C Whisstock and Gary A Silverman and Phillip I Bird and Stephen P Bottomley and Dion Kaiserman and Cliff J Luke and Stephen C Pak and Jean-Marc Reichhart and James A Huntington},
doi = {10.1074/jbc.R110.141408},
issn = {1083-351X},
year = {2010},
date = {2010-08-01},
journal = {J. Biol. Chem.},
volume = {285},
number = {32},
pages = {24307--24312},
abstract = {Inhibitory serpins are metastable proteins that undergo a substantial conformational rearrangement to covalently trap target peptidases. The serpin reactive center loop contributes a majority of the interactions that serpins make during the initial binding to target peptidases. However, structural studies on serpin-peptidase complexes reveal a broader set of contacts on the scaffold of inhibitory serpins that have substantial influence on guiding peptidase recognition. Structural and biophysical studies also reveal how aberrant serpin folding can lead to the formation of domain-swapped serpin multimers rather than the monomeric metastable state. Serpin domain swapping may therefore underlie the polymerization events characteristic of the serpinopathies. Finally, recent structural studies reveal how the serpin fold has been adapted for non-inhibitory functions such as hormone binding.},
keywords = {Animals, Biological, Biological Transport, Biophysics, Catalytic Domain, Hormones, Humans, Kinetics, M3i, Models, Peptide Hydrolases, Protein Binding, Protein Conformation, Protein Structure, reichhart, Serpins, Substrate Specificity, Tertiary, Thrombin},
pubstate = {published},
tppubtype = {article}
}
Weber Alexander N R, Moncrieffe Martin C, Gangloff Monique, Imler Jean-Luc, Gay Nicholas J
Ligand-receptor and receptor-receptor interactions act in concert to activate signaling in the Drosophila toll pathway Article de journal
Dans: The Journal of Biological Chemistry, vol. 280, non 24, p. 22793–22799, 2005, ISSN: 0021-9258.
Résumé | Liens | BibTeX | Étiquettes: Amino Acid, Animals, Biophysical Phenomena, Biophysics, Body Patterning, Calorimetry, Cell Line, Cell Surface, Cross-Linking Reagents, Cytokines, dimerization, Electrophoresis, Humans, imler, ligands, Luciferases, M3i, Membrane Glycoproteins, Polyacrylamide Gel, Protein Binding, Protein Structure, Receptors, Recombinant Proteins, Sequence Homology, Signal Transduction, Tertiary, Time Factors, Toll-Like Receptors, Ultracentrifugation
@article{weber_ligand-receptor_2005,
title = {Ligand-receptor and receptor-receptor interactions act in concert to activate signaling in the Drosophila toll pathway},
author = {Alexander N R Weber and Martin C Moncrieffe and Monique Gangloff and Jean-Luc Imler and Nicholas J Gay},
doi = {10.1074/jbc.M502074200},
issn = {0021-9258},
year = {2005},
date = {2005-01-01},
journal = {The Journal of Biological Chemistry},
volume = {280},
number = {24},
pages = {22793--22799},
abstract = {In Drosophila, the signaling pathway mediated by the Toll receptor is critical for the establishment of embryonic dorso-ventral pattern and for innate immune responses to bacterial and fungal pathogens. Toll is activated by high affinity binding of the cytokine Spätzle, a dimeric ligand of the cystine knot family. In vertebrates, a related family of Toll-like receptors play a critical role in innate immune responses. Despite the importance of this family of receptors, little is known about the biochemical events that lead to receptor activation and signaling. Here, we show that Spätzle binds to the N-terminal region of Toll and, using biophysical methods, that the binding is complex. The two binding events that cause formation of the cross-linked complex are non-equivalent: the first Toll ectodomain binds Spätzle with an affinity 3-fold higher than the second molecule suggesting that pathway activation involves negative cooperativity. We further show that the Toll ectodomains are able to form low affinity dimers in solution and that juxtamembrane sequences of Toll are critical for the activation or derepression of the pathway. These results, taken together, suggest a mechanism of signal transduction that requires both ligand-receptor and receptor-receptor interactions.},
keywords = {Amino Acid, Animals, Biophysical Phenomena, Biophysics, Body Patterning, Calorimetry, Cell Line, Cell Surface, Cross-Linking Reagents, Cytokines, dimerization, Electrophoresis, Humans, imler, ligands, Luciferases, M3i, Membrane Glycoproteins, Polyacrylamide Gel, Protein Binding, Protein Structure, Receptors, Recombinant Proteins, Sequence Homology, Signal Transduction, Tertiary, Time Factors, Toll-Like Receptors, Ultracentrifugation},
pubstate = {published},
tppubtype = {article}
}