Imler Jean-Luc
Overview of Drosophila immunity: a historical perspective Article de journal
Dans: Developmental and Comparative Immunology, vol. 42, no. 1, p. 3–15, 2014, ISSN: 1879-0089.
Résumé | Liens | BibTeX | Étiquettes: Allergy and Immunology, Animal, Animals, Antimicrobial Cationic Peptides, Antimicrobial peptides, history, Humans, IMD pathway, imler, Immunity, Innate, innate immunity, M3i, Models, Pattern recognition receptors, Signal Transduction, Toll-Like Receptors
@article{imler_overview_2014,
title = {Overview of Drosophila immunity: a historical perspective},
author = {Jean-Luc Imler},
doi = {10.1016/j.dci.2013.08.018},
issn = {1879-0089},
year = {2014},
date = {2014-01-01},
journal = {Developmental and Comparative Immunology},
volume = {42},
number = {1},
pages = {3--15},
abstract = {The functional analysis of genes from the model organism Drosophila melanogaster has provided invaluable information for many cellular and developmental or physiological processes, including immunity. The best-understood aspect of Drosophila immunity is the inducible humoral response, first recognized in 1972. This pioneering work led to a remarkable series of findings over the next 30 years, ranging from the identification and characterization of the antimicrobial peptides produced, to the deciphering of the signalling pathways activating the genes that encode them and, ultimately, to the discovery of the receptors sensing infection. These studies on an insect model coincided with a revival of the field of innate immunity, and had an unanticipated impact on the biomedical field.},
keywords = {Allergy and Immunology, Animal, Animals, Antimicrobial Cationic Peptides, Antimicrobial peptides, history, Humans, IMD pathway, imler, Immunity, Innate, innate immunity, M3i, Models, Pattern recognition receptors, Signal Transduction, Toll-Like Receptors},
pubstate = {published},
tppubtype = {article}
}
Lemaitre Bruno, Nicolas Emmanuelle, Michaut Lydia, Reichhart Jean-Marc, Hoffmann Jules A
Pillars article: the dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996. 86: 973-983 Article de journal
Dans: J. Immunol., vol. 188, no. 11, p. 5210–5220, 2012, ISSN: 1550-6606.
Résumé | BibTeX | Étiquettes: Animals, Antifungal Agents, Developmental, DNA-Binding Proteins, Gene Expression Regulation, history, hoffmann, M3i, Multigene Family, Mycoses, Phosphoproteins, reichhart, Toll-Like Receptors
@article{lemaitre_pillars_2012,
title = {Pillars article: the dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996. 86: 973-983},
author = {Bruno Lemaitre and Emmanuelle Nicolas and Lydia Michaut and Jean-Marc Reichhart and Jules A Hoffmann},
issn = {1550-6606},
year = {2012},
date = {2012-06-01},
journal = {J. Immunol.},
volume = {188},
number = {11},
pages = {5210--5220},
abstract = {The cytokine-induced activation cascade of NF-kappaB in mammals and the activation of the morphogen dorsal in Drosophila embryos show striking structural and functional similarities (Toll/IL-1, Cactus/I-kappaB, and dorsal/NF-kappaB). Here we demonstrate that these parallels extend to the immune response of Drosophila. In particular, the intracellular components of the dorsoventral signaling pathway (except for dorsal) and the extracellular Toll ligand, spätzle regulatory gene cassette, control expression of the antifungal peptide gene drosomycin in adults. We also show that mutations in the Toll signaling pathway dramatically reduce survival after fungal infection. Antibacterial genes are induced either by a distinct pathway involving the immune deficiency gene (imd) or by combined activation of both imd and dorsoventral pathways.},
keywords = {Animals, Antifungal Agents, Developmental, DNA-Binding Proteins, Gene Expression Regulation, history, hoffmann, M3i, Multigene Family, Mycoses, Phosphoproteins, reichhart, Toll-Like Receptors},
pubstate = {published},
tppubtype = {article}
}
Chtarbanova Stanislava, Imler Jean-Luc
Microbial sensing by Toll receptors: a historical perspective Article de journal
Dans: Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 8, p. 1734–1738, 2011, ISSN: 1524-4636.
Résumé | Liens | BibTeX | Étiquettes: Animals, Cardiovascular Diseases, history, Host-Pathogen Interactions, Humans, imler, Immunity, Innate, M3i, Macrophages, Toll-Like Receptors
@article{chtarbanova_microbial_2011,
title = {Microbial sensing by Toll receptors: a historical perspective},
author = {Stanislava Chtarbanova and Jean-Luc Imler},
doi = {10.1161/ATVBAHA.108.179523},
issn = {1524-4636},
year = {2011},
date = {2011-08-01},
journal = {Arteriosclerosis, Thrombosis, and Vascular Biology},
volume = {31},
number = {8},
pages = {1734--1738},
abstract = {The family of Toll-like receptors plays an essential role in the induction of the immune response. These receptors sense the presence of microbial ligands and activate the nuclear factor-κB transcription factor. We review the key studies that led from the formulation of the concept of pattern recognition receptors to the characterization of Toll-like receptors, insisting on the important role played by the model organism Drosophila melanogaster and on the increasing evidence connecting these receptors to cardiovascular disease.},
keywords = {Animals, Cardiovascular Diseases, history, Host-Pathogen Interactions, Humans, imler, Immunity, Innate, M3i, Macrophages, Toll-Like Receptors},
pubstate = {published},
tppubtype = {article}
}