Publications
2018
Reynard Olivier, Schaeffer Evelyne, Volchkova Valentina A, Cimarelli Andrea, Mueller Christopher G, Volchkov Viktor E
Mannoside Glycolipid Conjugates Display Antiviral Activity Against Ebola Virus Article de journal
Dans: The Journal of Infectious Diseases, vol. 218, non suppl_5, p. S666–S671, 2018, ISSN: 1537-6613.
Résumé | Liens | BibTeX | Étiquettes: Animals, Antiviral Agents, Chlorocebus aethiops, Ebolavirus, Glycolipids, Humans, Mannosides, Team-Mueller, Vero Cells, Virus Internalization
@article{reynard_mannoside_2018,
title = {Mannoside Glycolipid Conjugates Display Antiviral Activity Against Ebola Virus},
author = {Olivier Reynard and Evelyne Schaeffer and Valentina A Volchkova and Andrea Cimarelli and Christopher G Mueller and Viktor E Volchkov},
doi = {10.1093/infdis/jiy464},
issn = {1537-6613},
year = {2018},
date = {2018-11-01},
journal = {The Journal of Infectious Diseases},
volume = {218},
number = {suppl_5},
pages = {S666--S671},
abstract = {The West African outbreak of Ebola virus (EBOV) infection during 2013-2016 highlighted the need for development of field-applicable therapeutic drugs for this infection. Here we report that mannoside glycolipid conjugates (MGCs) consisting of a trimannose head and a lipophilic chain assembled by a linker inhibit EBOV infection not only of human monocyte-derived dendritic cells and macrophages, but also of a number of susceptible cells. Analysis of the mode of action leads us to conclude that MGCs act directly on cells, notably by preventing virus endocytosis.},
keywords = {Animals, Antiviral Agents, Chlorocebus aethiops, Ebolavirus, Glycolipids, Humans, Mannosides, Team-Mueller, Vero Cells, Virus Internalization},
pubstate = {published},
tppubtype = {article}
}
Schaeffer Evelyne, Flacher Vincent, Neuberg Patrick, Hoste Astrid, Brulefert Adrien, Fauny Jean-Daniel, Wagner Alain, Mueller Christopher G
Inhibition of dengue virus infection by mannoside glycolipid conjugates Article de journal
Dans: Antiviral Research, vol. 154, p. 116–123, 2018, ISSN: 1872-9096.
Résumé | Liens | BibTeX | Étiquettes: Animals, Antiviral Agents, Cell Line, Cell Membrane, Chemistry, Chlorocebus aethiops, Dendritic Cells, Dengue, Dengue virus, development, Drug, Drug Discovery, Flavivirus, function, Fusion, Glycolipids, Health, Hep G2 Cells, Human, Humans, immunopathology, infection, inhibition, inhibitors, Inhibitory Concentration 50, lipid, Macrophages, Mannosides, Membrane, Serogroup, Skin, Team-Mueller, vaccine, Vaccines, Vero Cells, viral Infection, virus, Virus Replication
@article{schaeffer_inhibition_2018b,
title = {Inhibition of dengue virus infection by mannoside glycolipid conjugates},
author = {Evelyne Schaeffer and Vincent Flacher and Patrick Neuberg and Astrid Hoste and Adrien Brulefert and Jean-Daniel Fauny and Alain Wagner and Christopher G Mueller},
doi = {10.1016/j.antiviral.2018.04.005},
issn = {1872-9096},
year = {2018},
date = {2018-01-01},
journal = {Antiviral Research},
volume = {154},
pages = {116--123},
abstract = {Dengue virus (DENV), a mosquito-borne flavivirus, causes severe and potentially fatal symptoms in millions of infected individuals each year. Although dengue fever represents a major global public health problem, the vaccines or antiviral drugs proposed so far have not shown sufficient efficacy and safety, calling for new antiviral developments. Here we have shown that a mannoside glycolipid conjugate (MGC) bearing a trimannose head with a saturated lipid chain inhibited DENV productive infection. It showed remarkable cell promiscuity, being active in human skin dendritic cells, hepatoma cell lines and Vero cells, and was active against all four DENV serotypes, with an IC50 in the low micromolar range. Time-of-addition experiments and structure-activity analyses revealed the importance of the lipid chain to interfere with an early viral infection step. This, together with a correlation between antiviral activity and membrane polarization by the lipid moiety indicated that the inhibitor functions by blocking viral envelope fusion with the endosome membrane. These finding establish MGCs as a novel class of antivirals against the DENV.},
keywords = {Animals, Antiviral Agents, Cell Line, Cell Membrane, Chemistry, Chlorocebus aethiops, Dendritic Cells, Dengue, Dengue virus, development, Drug, Drug Discovery, Flavivirus, function, Fusion, Glycolipids, Health, Hep G2 Cells, Human, Humans, immunopathology, infection, inhibition, inhibitors, Inhibitory Concentration 50, lipid, Macrophages, Mannosides, Membrane, Serogroup, Skin, Team-Mueller, vaccine, Vaccines, Vero Cells, viral Infection, virus, Virus Replication},
pubstate = {published},
tppubtype = {article}
}
2009
Berry Bassam, Deddouche Safia, Kirschner Doris, Imler Jean-Luc, Antoniewski Christophe
Viral suppressors of RNA silencing hinder exogenous and endogenous small RNA pathways in Drosophila Article de journal
Dans: PloS One, vol. 4, non 6, p. e5866, 2009, ISSN: 1932-6203.
Résumé | Liens | BibTeX | Étiquettes: Animals, Antiviral Agents, Crosses, Double-Stranded, Gene Silencing, Genetic, Genetically Modified, Heterozygote, imler, Invertebrate, M3i, Photoreceptor Cells, Reverse Transcriptase Polymerase Chain Reaction, RNA, RNA Interference, Transgenes
@article{berry_viral_2009,
title = {Viral suppressors of RNA silencing hinder exogenous and endogenous small RNA pathways in Drosophila},
author = {Bassam Berry and Safia Deddouche and Doris Kirschner and Jean-Luc Imler and Christophe Antoniewski},
doi = {10.1371/journal.pone.0005866},
issn = {1932-6203},
year = {2009},
date = {2009-01-01},
journal = {PloS One},
volume = {4},
number = {6},
pages = {e5866},
abstract = {BACKGROUND: In plants and insects, RNA interference (RNAi) is the main responder against viruses and shapes the basis of antiviral immunity. Viruses counter this defense by expressing viral suppressors of RNAi (VSRs). While VSRs in Drosophila melanogaster were shown to inhibit RNAi through different modes of action, whether they act on other silencing pathways remained unexplored. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that expression of various plant and insect VSRs in transgenic flies does not perturb the Drosophila microRNA (miRNA) pathway; but in contrast, inhibits antiviral RNAi and the RNA silencing response triggered by inverted repeat transcripts, and injection of dsRNA or siRNA. Strikingly, these VSRs also suppressed transposon silencing by endogenous siRNAs (endo-siRNAs). CONCLUSIONS/SIGNIFICANCE: Our findings identify VSRs as tools to unravel small RNA pathways in insects and suggest a cosuppression of antiviral RNAi and endo-siRNA silencing by viruses during fly infections.},
keywords = {Animals, Antiviral Agents, Crosses, Double-Stranded, Gene Silencing, Genetic, Genetically Modified, Heterozygote, imler, Invertebrate, M3i, Photoreceptor Cells, Reverse Transcriptase Polymerase Chain Reaction, RNA, RNA Interference, Transgenes},
pubstate = {published},
tppubtype = {article}
}
2007
Beutler Bruce, Eidenschenk Celine, Crozat Karine, Imler Jean-Luc, Takeuchi Osamu, Hoffmann Jules A, Akira Shizuo
Genetic analysis of resistance to viral infection Article de journal
Dans: Nature Reviews. Immunology, vol. 7, non 10, p. 753–766, 2007, ISSN: 1474-1741.
Résumé | Liens | BibTeX | Étiquettes: Animals, Antiviral Agents, Disease Susceptibility, Drug Resistance, Eukaryotic Cells, hoffmann, Humans, imler, Immunity, M3i, Mutation, Viral, Virus Diseases, viruses
@article{beutler_genetic_2007,
title = {Genetic analysis of resistance to viral infection},
author = {Bruce Beutler and Celine Eidenschenk and Karine Crozat and Jean-Luc Imler and Osamu Takeuchi and Jules A Hoffmann and Shizuo Akira},
doi = {10.1038/nri2174},
issn = {1474-1741},
year = {2007},
date = {2007-10-01},
journal = {Nature Reviews. Immunology},
volume = {7},
number = {10},
pages = {753--766},
abstract = {As machines that reprogramme eukaryotic cells to suit their own purposes, viruses present a difficult problem for multicellular hosts, and indeed, have become one of the central pre-occupations of the immune system. Unable to permanently outpace individual viruses in an evolutionary footrace, higher eukaryotes have evolved broadly active mechanisms with which to sense viruses and suppress their proliferation. These mechanisms have recently been elucidated by a combination of forward and reverse genetic methods. Some of these mechanisms are clearly ancient, whereas others are relatively new. All are remarkably adept at discriminating self from non-self, and allow the host to cope with what might seem an impossible predicament.},
keywords = {Animals, Antiviral Agents, Disease Susceptibility, Drug Resistance, Eukaryotic Cells, hoffmann, Humans, imler, Immunity, M3i, Mutation, Viral, Virus Diseases, viruses},
pubstate = {published},
tppubtype = {article}
}
2001
Bianco A, Ros T Da, Prato M, Toniolo C
Fullerene-based amino acids and peptides Article de journal
Dans: Journal of Peptide Science: An Official Publication of the European Peptide Society, vol. 7, non 4, p. 208–219, 2001, ISSN: 1075-2617.
Résumé | Liens | BibTeX | Étiquettes: Amino Acids, Animals, Antiviral Agents, carbon, Fullerenes, Humans, I2CT, Infections, Oxidative Stress, Peptides, Proline, Team-Bianco
@article{bianco_fullerene-based_2001,
title = {Fullerene-based amino acids and peptides},
author = {A Bianco and T Da Ros and M Prato and C Toniolo},
doi = {10.1002/psc.313},
issn = {1075-2617},
year = {2001},
date = {2001-04-01},
journal = {Journal of Peptide Science: An Official Publication of the European Peptide Society},
volume = {7},
number = {4},
pages = {208--219},
abstract = {Recent advances in the chemistry of fullerene have allowed the synthesis of many classes of novel fullerene derivatives. Among these classes, fullerene-based amino acids and peptides are particularly interesting, both for structural studies and biological applications. In this review, we will discuss our own achievements in this rapidly growing field. In particular, the application of fulleroproline (Fpr) amino acids and peptides to medicinal chemistry and material science will be highlighted.},
keywords = {Amino Acids, Animals, Antiviral Agents, carbon, Fullerenes, Humans, I2CT, Infections, Oxidative Stress, Peptides, Proline, Team-Bianco},
pubstate = {published},
tppubtype = {article}
}