Publications
2002
Christophides George K, Zdobnov Evgeny, Barillas-Mury Carolina, Birney Ewan, Blandin Stephanie A, Blass Claudia, Brey Paul T, Collins Frank H, Danielli Alberto, Dimopoulos George, Hetru Charles, Hoa Ngo T, Hoffmann Jules A, Kanzok Stefan M, Letunic Ivica, Levashina Elena A, Loukeris Thanasis G, Lycett Gareth, Meister Stephan, Michel Kristin, Moita Luis F, Müller Hans-Michael, Osta Mike A, Paskewitz Susan M, Reichhart Jean-Marc, Rzhetsky Andrey, Troxler Laurent, Vernick Kenneth D, Vlachou Dina, Volz Jennifer, von Mering Christian, Xu Jiannong, Zheng Liangbiao, Bork Peer, Kafatos Fotis C
Immunity-related genes and gene families in Anopheles gambiae Article de journal
Dans: Science, vol. 298, non 5591, p. 159–165, 2002, ISSN: 1095-9203.
Résumé | Liens | BibTeX | Étiquettes: Alternative Splicing, Animals, Anopheles, Apoptosis, bacteria, bioinformatic, blandin, Catechol Oxidase, Computational Biology, Enzyme Precursors, Gene Expression Regulation, Genes, Genetic, Genome, hoffmann, Immunity, Innate, Insect, Insect Proteins, M3i, Multigene Family, Peptides, Phylogeny, Plasmodium, Protein Structure, reichhart, Selection, Serine Endopeptidases, Serpins, Signal Transduction, Tertiary
@article{christophides_immunity-related_2002,
title = {Immunity-related genes and gene families in Anopheles gambiae},
author = {George K Christophides and Evgeny Zdobnov and Carolina Barillas-Mury and Ewan Birney and Stephanie A Blandin and Claudia Blass and Paul T Brey and Frank H Collins and Alberto Danielli and George Dimopoulos and Charles Hetru and Ngo T Hoa and Jules A Hoffmann and Stefan M Kanzok and Ivica Letunic and Elena A Levashina and Thanasis G Loukeris and Gareth Lycett and Stephan Meister and Kristin Michel and Luis F Moita and Hans-Michael Müller and Mike A Osta and Susan M Paskewitz and Jean-Marc Reichhart and Andrey Rzhetsky and Laurent Troxler and Kenneth D Vernick and Dina Vlachou and Jennifer Volz and Christian von Mering and Jiannong Xu and Liangbiao Zheng and Peer Bork and Fotis C Kafatos},
url = {http://www.ncbi.nlm.nih.gov/pubmed/12364793},
doi = {10.1126/science.1077136},
issn = {1095-9203},
year = {2002},
date = {2002-10-01},
journal = {Science},
volume = {298},
number = {5591},
pages = {159--165},
abstract = {We have identified 242 Anopheles gambiae genes from 18 gene families implicated in innate immunity and have detected marked diversification relative to Drosophila melanogaster. Immune-related gene families involved in recognition, signal modulation, and effector systems show a marked deficit of orthologs and excessive gene expansions, possibly reflecting selection pressures from different pathogens encountered in these insects' very different life-styles. In contrast, the multifunctional Toll signal transduction pathway is substantially conserved, presumably because of counterselection for developmental stability. Representative expression profiles confirm that sequence diversification is accompanied by specific responses to different immune challenges. Alternative RNA splicing may also contribute to expansion of the immune repertoire.},
keywords = {Alternative Splicing, Animals, Anopheles, Apoptosis, bacteria, bioinformatic, blandin, Catechol Oxidase, Computational Biology, Enzyme Precursors, Gene Expression Regulation, Genes, Genetic, Genome, hoffmann, Immunity, Innate, Insect, Insect Proteins, M3i, Multigene Family, Peptides, Phylogeny, Plasmodium, Protein Structure, reichhart, Selection, Serine Endopeptidases, Serpins, Signal Transduction, Tertiary},
pubstate = {published},
tppubtype = {article}
}