Publications
2014
Tartey Sarang, Matsushita Kazufumi, Vandenbon Alexis, Ori Daisuke, Imamura Tomoko, Mino Takashi, Standley Daron M, Hoffmann Jules A, Reichhart Jean-Marc, Akira Shizuo, Takeuchi Osamu
Akirin2 is critical for inducing inflammatory genes by bridging IκB-ζ and the SWI/SNF complex Article de journal
Dans: EMBO J., vol. 33, non 20, p. 2332–2348, 2014, ISSN: 1460-2075.
Résumé | Liens | BibTeX | Étiquettes: Adaptor Proteins, Animals, Cell Nucleus, Chromatin Assembly and Disassembly, chromatin remodeling, Chromosomal Proteins, cytokine, Cytokines, Female, Gene Expression Regulation, gene regulation, Genetic, hoffmann, Humans, Immunity, Innate, innate immunity, Knockout, Listeria monocytogenes, M3i, Macrophages, Male, Mice, Multiprotein Complexes, Non-Histone, Nuclear Proteins, Promoter Regions, Protein Binding, reichhart, Repressor Proteins, Sequence Deletion, Signal Transducing, Transcriptional Activation
@article{tartey_akirin2_2014,
title = {Akirin2 is critical for inducing inflammatory genes by bridging IκB-ζ and the SWI/SNF complex},
author = {Sarang Tartey and Kazufumi Matsushita and Alexis Vandenbon and Daisuke Ori and Tomoko Imamura and Takashi Mino and Daron M Standley and Jules A Hoffmann and Jean-Marc Reichhart and Shizuo Akira and Osamu Takeuchi},
doi = {10.15252/embj.201488447},
issn = {1460-2075},
year = {2014},
date = {2014-10-01},
journal = {EMBO J.},
volume = {33},
number = {20},
pages = {2332--2348},
abstract = {Transcription of inflammatory genes in innate immune cells is coordinately regulated by transcription factors, including NF-κB, and chromatin modifiers. However, it remains unclear how microbial sensing initiates chromatin remodeling. Here, we show that Akirin2, an evolutionarily conserved nuclear protein, bridges NF-κB and the chromatin remodeling SWI/SNF complex by interacting with BRG1-Associated Factor 60 (BAF60) proteins as well as IκB-ζ, which forms a complex with the NF-κB p50 subunit. These interactions are essential for Toll-like receptor-, RIG-I-, and Listeria-mediated expression of proinflammatory genes including Il6 and Il12b in macrophages. Consistently, effective clearance of Listeria infection required Akirin2. Furthermore, Akirin2 and IκB-ζ recruitment to the Il6 promoter depend upon the presence of IκB-ζ and Akirin2, respectively, for regulation of chromatin remodeling. BAF60 proteins were also essential for the induction of Il6 in response to LPS stimulation. Collectively, the IκB-ζ-Akirin2-BAF60 complex physically links the NF-κB and SWI/SNF complexes in innate immune cell activation. By recruiting SWI/SNF chromatin remodellers to IκB-ζ, transcriptional coactivator for NF-κB, the conserved nuclear protein Akirin2 stimulates pro-inflammatory gene promoters in mouse macrophages during innate immune responses to viral or bacterial infection.},
keywords = {Adaptor Proteins, Animals, Cell Nucleus, Chromatin Assembly and Disassembly, chromatin remodeling, Chromosomal Proteins, cytokine, Cytokines, Female, Gene Expression Regulation, gene regulation, Genetic, hoffmann, Humans, Immunity, Innate, innate immunity, Knockout, Listeria monocytogenes, M3i, Macrophages, Male, Mice, Multiprotein Complexes, Non-Histone, Nuclear Proteins, Promoter Regions, Protein Binding, reichhart, Repressor Proteins, Sequence Deletion, Signal Transducing, Transcriptional Activation},
pubstate = {published},
tppubtype = {article}
}
2010
Matskevich Alexey A, Quintin Jessica, Ferrandon Dominique
The Drosophila PRR GNBP3 assembles effector complexes involved in antifungal defenses independently of its Toll-pathway activation function Article de journal
Dans: Eur. J. Immunol., vol. 40, non 5, p. 1244–1254, 2010, ISSN: 1521-4141.
Résumé | Liens | BibTeX | Étiquettes: Agglutination, Animals, Beauveria, Beauveria/immunology, Candida albicans, Candida albicans/immunology, Carrier Proteins, Carrier Proteins/*immunology/pharmacology, Drosophila melanogaster/*immunology/microbiology, Drosophila Proteins/*immunology/pharmacology/physiology, Enzyme Activation, ferrandon, Fungal, Fungi, Fungi/*immunology, Hemolymph, Hemolymph/immunology, M3i, Melanins, Melanins/*physiology, Monophenol Monooxygenase, Monophenol Monooxygenase/physiology, Multiprotein Complexes, Multiprotein Complexes/physiology, Recombinant Fusion Proteins, Recombinant Fusion Proteins/pharmacology, Serpins, Serpins/physiology, Spores, Toll-Like Receptors, Toll-Like Receptors/immunology
@article{matskevich_drosophila_2010b,
title = {The Drosophila PRR GNBP3 assembles effector complexes involved in antifungal defenses independently of its Toll-pathway activation function},
author = {Alexey A Matskevich and Jessica Quintin and Dominique Ferrandon},
doi = {10.1002/eji.200940164},
issn = {1521-4141},
year = {2010},
date = {2010-05-01},
journal = {Eur. J. Immunol.},
volume = {40},
number = {5},
pages = {1244--1254},
abstract = {The Drosophila Toll-signaling pathway controls the systemic antifungal host response. Gram-negative binding protein 3 (GNBP3), a member of the beta-glucan recognition protein family senses fungal infections and activates this pathway. A second detection system perceives the activity of proteolytic fungal virulence factors and redundantly activates Toll. GNBP3(hades) mutant flies succumb more rapidly to Candida albicans and to entomopathogenic fungal infections than WT flies, despite normal triggering of the Toll pathway via the virulence detection system. These observations suggest that GNBP3 triggers antifungal defenses that are not dependent on activation of the Toll pathway. Here, we show that GNBP3 agglutinates fungal cells. Furthermore, it can activate melanization in a Toll-independent manner. Melanization is likely to be an essential defense against some fungal infections given that the entomopathogenic fungus Beauveria bassiana inhibits the activity of the main melanization enzymes, the phenol oxidases. Finally, we show that GNBP3 assembles "attack complexes", which comprise phenoloxidase and the necrotic serpin. We propose that Drosophila GNBP3 targets fungi immediately at the inception of the infection by bringing effector molecules in direct contact with the invading microorganisms.},
keywords = {Agglutination, Animals, Beauveria, Beauveria/immunology, Candida albicans, Candida albicans/immunology, Carrier Proteins, Carrier Proteins/*immunology/pharmacology, Drosophila melanogaster/*immunology/microbiology, Drosophila Proteins/*immunology/pharmacology/physiology, Enzyme Activation, ferrandon, Fungal, Fungi, Fungi/*immunology, Hemolymph, Hemolymph/immunology, M3i, Melanins, Melanins/*physiology, Monophenol Monooxygenase, Monophenol Monooxygenase/physiology, Multiprotein Complexes, Multiprotein Complexes/physiology, Recombinant Fusion Proteins, Recombinant Fusion Proteins/pharmacology, Serpins, Serpins/physiology, Spores, Toll-Like Receptors, Toll-Like Receptors/immunology},
pubstate = {published},
tppubtype = {article}
}