Publications
2017
Saliba Hanadi, Heurtault Béatrice, Bouharoun-Tayoun Hasnaa, Flacher Vincent, Frisch Benoît, Fournel Sylvie, Chamat Soulaima
Enhancing tumor specific immune responses by transcutaneous vaccination Journal Article
In: Expert Review of Vaccines, vol. 16, no. 11, pp. 1079–1094, 2017, ISSN: 1744-8395.
Abstract | Links | BibTeX | Tags: Administration, Cancer vaccine, Cancer Vaccines, Clinical Trials as Topic, Cutaneous, Dendritic Cells, Humans, liposome, Liposomes, nanoparticle, Nanoparticles, Neoplasms, Skin, skin dendritic cell, Team-Mueller, transcutaneous vaccination, Treatment Outcome, Vaccination
@article{saliba_enhancing_2017,
title = {Enhancing tumor specific immune responses by transcutaneous vaccination},
author = {Hanadi Saliba and Béatrice Heurtault and Hasnaa Bouharoun-Tayoun and Vincent Flacher and Benoît Frisch and Sylvie Fournel and Soulaima Chamat},
doi = {10.1080/14760584.2017.1382357},
issn = {1744-8395},
year = {2017},
date = {2017-01-01},
journal = {Expert Review of Vaccines},
volume = {16},
number = {11},
pages = {1079--1094},
abstract = {INTRODUCTION: Our understanding of the involvement of the immune system in cancer control has increased over recent years. However, the development of cancer vaccines intended to reverse tumor-induced immune tolerance remains slow as most current vaccine candidates exhibit limited clinical efficacy. The skin is particularly rich with multiple subsets of dendritic cells (DCs) that are involved to varying degrees in the induction of robust immune responses. Transcutaneous administration of cancer vaccines may therefore harness the immune potential of these DCs, however, this approach is hampered by the impermeability of the stratum corneum. Innovative vaccine formulations including various nanoparticles, such as liposomes, are therefore needed to properly deliver cancer vaccine components to skin DCs. Areas covered: The recent insights into skin DC subsets and their functional specialization, the potential of nanoparticle-based vaccines in transcutaneous cancer vaccination and, finally, the most relevant clinical trial advances in liposomal and in cutaneous cancer vaccines will be discussed. Expert commentary: To define the optimal conditions for mounting protective skin DC-induced anti-tumor immune responses, investigation of the cellular and molecular interplay that controls tumor progression should be pursued in parallel with clinical development. The resulting knowledge will then be translated into improved cancer vaccines that better target the most appropriate immune players.},
keywords = {Administration, Cancer vaccine, Cancer Vaccines, Clinical Trials as Topic, Cutaneous, Dendritic Cells, Humans, liposome, Liposomes, nanoparticle, Nanoparticles, Neoplasms, Skin, skin dendritic cell, Team-Mueller, transcutaneous vaccination, Treatment Outcome, Vaccination},
pubstate = {published},
tppubtype = {article}
}
2014
Flacher Vincent, Tripp Christoph H, Mairhofer David G, Steinman Ralph M, Stoitzner Patrizia, Idoyaga Juliana, Romani Nikolaus
Murine Langerin+ dermal dendritic cells prime CD8+ Ŧ cells while Langerhans cells induce cross-tolerance Journal Article
In: EMBO molecular medicine, vol. 6, no. 9, pp. 1191–1204, 2014, ISSN: 1757-4684.
Abstract | Links | BibTeX | Tags: agonists, Animals, Antibodies, antibody, Antigen, Antigen Presentation, Antigens, C-Type, C-type lectin, cancer, CD70, CD8-Positive T-Lymphocytes, CD8+ T cells, CD8+ T‐cell responses, Cellular, CROSS-PRESENTATION, Cross-Priming, Cytotoxicity, Dendritic Cells, DERMAL DENDRITIC CELLS, DERMATOLOGY, disease, imiquimod, Immunization, IMMUNOGENICITY, Immunologic Memory, Immunological, Immunology, In vivo, Inbred C57BL, INDUCTION, Intradermal, Langerhans Cells, LECTIN, Lectins, Mannose-Binding Lectins, Maturation, Mice, Models, murine, OVALBUMIN, physiology, priming, RESPONSES, Skin, Surface, T CELLS, T-CELLS, Team-Mueller, tolerance, Vaccination, vaccine, Vaccines
@article{flacher_murine_2014,
title = {Murine Langerin+ dermal dendritic cells prime CD8+ Ŧ cells while Langerhans cells induce cross-tolerance},
author = {Vincent Flacher and Christoph H Tripp and David G Mairhofer and Ralph M Steinman and Patrizia Stoitzner and Juliana Idoyaga and Nikolaus Romani},
doi = {10.15252/emmm.201303283},
issn = {1757-4684},
year = {2014},
date = {2014-09-01},
journal = {EMBO molecular medicine},
volume = {6},
number = {9},
pages = {1191--1204},
abstract = {Skin dendritic cells (DCs) control the immunogenicity of cutaneously administered vaccines. Antigens targeted to DCs via the C-type lectin Langerin/CD207 are cross-presented to CD8(+) T cells in vivo. We investigated the relative roles of Langerhans cells (LCs) and Langerin(+) dermal DCs (dDCs) in different vaccination settings. Poly(I:C) and anti-CD40 agonist antibody promoted cytotoxic responses upon intradermal immunization with ovalbumin (OVA)-coupled anti-Langerin antibodies (Langerin/OVA). This correlated with CD70 upregulation in Langerin(+) dDCs, but not LCs. In chimeric mice where Langerin targeting was restricted to dDCs, CD8(+) T-cell memory was enhanced. Conversely, providing Langerin/OVA exclusively to LCs failed to prime cytotoxicity, despite initial antigen cross-presentation to CD8(+) T cells. Langerin/OVA combined with imiquimod could not prime CD8(+) T cells and resulted in poor cytotoxicity in subsequent responses. This tolerance induction required targeting and maturation of LCs. Altogether, Langerin(+) dDCs prime long-lasting cytotoxic responses, while cross-presentation by LCs negatively influences CD8(+) T-cell priming. Moreover, this highlights that DCs exposed to TLR agonists can still induce tolerance and supports the existence of qualitatively different DC maturation programs.},
keywords = {agonists, Animals, Antibodies, antibody, Antigen, Antigen Presentation, Antigens, C-Type, C-type lectin, cancer, CD70, CD8-Positive T-Lymphocytes, CD8+ T cells, CD8+ T‐cell responses, Cellular, CROSS-PRESENTATION, Cross-Priming, Cytotoxicity, Dendritic Cells, DERMAL DENDRITIC CELLS, DERMATOLOGY, disease, imiquimod, Immunization, IMMUNOGENICITY, Immunologic Memory, Immunological, Immunology, In vivo, Inbred C57BL, INDUCTION, Intradermal, Langerhans Cells, LECTIN, Lectins, Mannose-Binding Lectins, Maturation, Mice, Models, murine, OVALBUMIN, physiology, priming, RESPONSES, Skin, Surface, T CELLS, T-CELLS, Team-Mueller, tolerance, Vaccination, vaccine, Vaccines},
pubstate = {published},
tppubtype = {article}
}
2012
Romani N, Flacher V, Tripp C H, Sparber F, Ebner S, Stoitzner P
Targeting skin dendritic cells to improve intradermal vaccination Journal Article
In: Current Topics in Microbiology and Immunology, vol. 351, pp. 113–138, 2012, ISSN: 0070-217X.
Abstract | Links | BibTeX | Tags: Adaptive Immunity, administration & dosage, Analysis, Animals, Antibodies, antibody, Antigen, ANTIGEN PRESENTING CELLS, Antigen-Presenting Cells, Antigens, B CELLS, B-Lymphocytes, Bacterial Infections, Biosynthesis, C-Type, CD, CD14, CD1a, Cell Lineage, cytokine, Cytokines, cytology, Cytotoxic, Dendritic Cells, DERMATOLOGY, DERMIS, Drug Delivery Systems, Expression, Human, Humans, Immunity, Immunology, INDUCTION, Injections, Innate, Intradermal, Langerhans Cells, LECTIN, Lectins, Lymphocyte Activation, Lymphocytes, Mannose-Binding Lectins, methods, Mice, mouse, Muscle, prevention & control, PRODUCTION, Protein, review, Skin, SUBSETS, T-Lymphocytes, Team-Mueller, tolerance, Vaccination, vaccine, Vaccines, Virus Diseases
@article{romani_targeting_2012,
title = {Targeting skin dendritic cells to improve intradermal vaccination},
author = {N Romani and V Flacher and C H Tripp and F Sparber and S Ebner and P Stoitzner},
doi = {10.1007/82_2010_118},
issn = {0070-217X},
year = {2012},
date = {2012-01-01},
journal = {Current Topics in Microbiology and Immunology},
volume = {351},
pages = {113--138},
abstract = {Vaccinations in medicine are typically administered into the muscle beneath the skin or into the subcutaneous fat. As a consequence, the vaccine is immunologically processed by antigen-presenting cells of the skin or the muscle. Recent evidence suggests that the clinically seldom used intradermal route is effective and possibly even superior to the conventional subcutaneous or intramuscular route. Several types of professional antigen-presenting cells inhabit the healthy skin. Epidermal Langerhans cells (CD207/langerin(+)), dermal langerin(neg), and dermal langerin(+) dendritic cells (DC) have been described, the latter subset so far only in mouse skin. In human skin langerin(neg) dermal DC can be further classified based on their reciprocal expression of CD1a and CD14. The relative contributions of these subsets to the generation of immunity or tolerance are still unclear. Yet, specializations of these different populations have become apparent. Langerhans cells in human skin appear to be specialized for induction of cytotoxic T lymphocytes; human CD14(+) dermal DC can promote antibody production by B cells. It is currently attempted to rationally devise and improve vaccines by harnessing such specific properties of skin DC. This could be achieved by specifically targeting functionally diverse skin DC subsets. We discuss here advances in our knowledge on the immunological properties of skin DC and strategies to significantly improve the outcome of vaccinations by applying this knowledge.},
keywords = {Adaptive Immunity, administration & dosage, Analysis, Animals, Antibodies, antibody, Antigen, ANTIGEN PRESENTING CELLS, Antigen-Presenting Cells, Antigens, B CELLS, B-Lymphocytes, Bacterial Infections, Biosynthesis, C-Type, CD, CD14, CD1a, Cell Lineage, cytokine, Cytokines, cytology, Cytotoxic, Dendritic Cells, DERMATOLOGY, DERMIS, Drug Delivery Systems, Expression, Human, Humans, Immunity, Immunology, INDUCTION, Injections, Innate, Intradermal, Langerhans Cells, LECTIN, Lectins, Lymphocyte Activation, Lymphocytes, Mannose-Binding Lectins, methods, Mice, mouse, Muscle, prevention & control, PRODUCTION, Protein, review, Skin, SUBSETS, T-Lymphocytes, Team-Mueller, tolerance, Vaccination, vaccine, Vaccines, Virus Diseases},
pubstate = {published},
tppubtype = {article}
}
2010
Flacher Vincent, Tripp Christoph H, Stoitzner Patrizia, Haid Bernhard, Ebner Susanne, Frari Barbara Del, Koch Franz, Park Chae Gyu, Steinman Ralph M, Idoyaga Juliana, Romani Nikolaus
Epidermal Langerhans cells rapidly capture and present antigens from C-type lectin-targeting antibodies deposited in the dermis Journal Article
In: The Journal of Investigative Dermatology, vol. 130, no. 3, pp. 755–762, 2010, ISSN: 1523-1747.
Abstract | Links | BibTeX | Tags: Animals, Antibodies, antibody, Antigen, Antigen Presentation, ANTIGEN PRESENTING CELLS, Antigen-Presenting Cells, Antigens, BASEMENT MEMBRANE, C-Type, C-type lectin, CD103, CD8+ T cells, Cell Division, Cell Movement, Cells, Culture, Cultured, cytology, Dendritic Cells, DERMATOLOGY, DERMIS, Epidermal Cells, Epidermis, function, Human, Humans, Immunology, in situ, IN VITRO, In vivo, Inbred BALB C, Inbred C57BL, Injections, Intradermal, Langerhans Cells, LECTIN, Lectins, mAb, Mannose-Binding Lectins, Membrane, Mice, Monoclonal, mouse, murine, Pharmacology, Proliferation, Protein, Receptor, Skin, Surface, T CELLS, T-CELLS, T-Lymphocytes, Team-Mueller, Vaccination, vaccine, Vaccines
@article{flacher_epidermal_2010,
title = {Epidermal Langerhans cells rapidly capture and present antigens from C-type lectin-targeting antibodies deposited in the dermis},
author = {Vincent Flacher and Christoph H Tripp and Patrizia Stoitzner and Bernhard Haid and Susanne Ebner and Barbara Del Frari and Franz Koch and Chae Gyu Park and Ralph M Steinman and Juliana Idoyaga and Nikolaus Romani},
doi = {10.1038/jid.2009.343},
issn = {1523-1747},
year = {2010},
date = {2010-03-01},
journal = {The Journal of Investigative Dermatology},
volume = {130},
number = {3},
pages = {755--762},
abstract = {Antigen-presenting cells can capture antigens that are deposited in the skin, including vaccines given subcutaneously. These include different dendritic cells (DCs) such as epidermal Langerhans cells (LCs), dermal DCs, and dermal langerin+ DCs. To evaluate access of dermal antigens to skin DCs, we used mAb to two C-type lectin endocytic receptors, DEC-205/CD205 and langerin/CD207. When applied to murine and human skin explant cultures, these mAbs were efficiently taken up by epidermal LCs. In addition, anti-DEC-205 targeted langerin+ CD103+ and langerin- CD103- mouse dermal DCs. Unexpectedly, intradermal injection of either mAb, but not isotype control, resulted in strong and rapid labeling of LCs in situ, implying that large molecules can diffuse through the basement membrane into the epidermis. Epidermal LCs targeted in vivo by ovalbumin-coupled anti-DEC-205 potently presented antigen to CD4+ and CD8+ T cells in vitro. However, to our surprise, LCs targeted through langerin were unable to trigger T-cell proliferation. Thus, epidermal LCs have a major function in uptake of lectin-binding antibodies under standard vaccination conditions.},
keywords = {Animals, Antibodies, antibody, Antigen, Antigen Presentation, ANTIGEN PRESENTING CELLS, Antigen-Presenting Cells, Antigens, BASEMENT MEMBRANE, C-Type, C-type lectin, CD103, CD8+ T cells, Cell Division, Cell Movement, Cells, Culture, Cultured, cytology, Dendritic Cells, DERMATOLOGY, DERMIS, Epidermal Cells, Epidermis, function, Human, Humans, Immunology, in situ, IN VITRO, In vivo, Inbred BALB C, Inbred C57BL, Injections, Intradermal, Langerhans Cells, LECTIN, Lectins, mAb, Mannose-Binding Lectins, Membrane, Mice, Monoclonal, mouse, murine, Pharmacology, Proliferation, Protein, Receptor, Skin, Surface, T CELLS, T-CELLS, T-Lymphocytes, Team-Mueller, Vaccination, vaccine, Vaccines},
pubstate = {published},
tppubtype = {article}
}
Romani Nikolaus, Thurnher Martin, Idoyaga Juliana, Steinman Ralph M, Flacher Vincent
Targeting of antigens to skin dendritic cells: possibilities to enhance vaccine efficacy Journal Article
In: Immunology and Cell Biology, vol. 88, no. 4, pp. 424–430, 2010, ISSN: 1440-1711.
Abstract | Links | BibTeX | Tags: Animals, Antibodies, antibody, Antigen, ANTIGEN PRESENTING CELLS, Antigen-Presenting Cells, Antigens, C-Type, CD, CD14, CD1a, CROSS-PRESENTATION, Dendritic Cells, DERMATOLOGY, Expression, Human, Humans, Immunity, Immunotherapy, INDUCTION, Intradermal, Langerhans Cells, Lectins, Lymphocytes, Mannose-Binding Lectins, mouse, Receptor, Skin, SUBSETS, T-Lymphocytes, Team-Mueller, tolerance, Vaccination, vaccine, Vaccines
@article{romani_targeting_2010,
title = {Targeting of antigens to skin dendritic cells: possibilities to enhance vaccine efficacy},
author = {Nikolaus Romani and Martin Thurnher and Juliana Idoyaga and Ralph M Steinman and Vincent Flacher},
doi = {10.1038/icb.2010.39},
issn = {1440-1711},
year = {2010},
date = {2010-01-01},
journal = {Immunology and Cell Biology},
volume = {88},
number = {4},
pages = {424--430},
abstract = {Vaccinations in medicine are commonly administered through the skin. Therefore, the vaccine is immunologically processed by antigen-presenting cells of the skin. There is recent evidence that the clinically less often used intradermal route is effective; in cases even superior to the conventional subcutaneous or intramuscular route. Professional antigen-presenting cells of the skin comprise epidermal Langerhans cells (CD207/langerin(+)), dermal langerin(-) and dermal langerin(+) dendritic cells (DCs). In human skin, langerin(-) dermal DCs can be further subdivided on the basis of their reciprocal CD1a and CD14 expression. The relative contributions of these subsets to the generation of immunity or tolerance are still unclear. Langerhans cells in human skin seem to be specialized for induction of cytotoxic T lymphocytes. Likewise, mouse Langerhans cells are capable of cross-presentation and of protecting against experimental tumours. It is desirable to harness these properties for immunotherapy. A promising strategy to dramatically improve the outcome of vaccinations is 'antigen targeting'. Thereby, the vaccine is delivered directly and selectively to defined types of skin DCs. Targeting is achieved by means of coupling antigen to antibodies that recognize cell surface receptors on DCs. This approach is being widely explored. Little is known, however, about the events that take place in the skin and the DCs subsets involved therein. This topic will be discussed in this article.},
keywords = {Animals, Antibodies, antibody, Antigen, ANTIGEN PRESENTING CELLS, Antigen-Presenting Cells, Antigens, C-Type, CD, CD14, CD1a, CROSS-PRESENTATION, Dendritic Cells, DERMATOLOGY, Expression, Human, Humans, Immunity, Immunotherapy, INDUCTION, Intradermal, Langerhans Cells, Lectins, Lymphocytes, Mannose-Binding Lectins, mouse, Receptor, Skin, SUBSETS, T-Lymphocytes, Team-Mueller, tolerance, Vaccination, vaccine, Vaccines},
pubstate = {published},
tppubtype = {article}
}
2005
Kostarelos K, Lacerda L, Partidos C D, Prato M, Bianco A
Carbon nanotube-mediated delivery of peptides and genes to cells: translating nanobiotechnology to therapeutics Journal Article
In: Journal of Drug Delivery Science and Technology, vol. 15, no. 1, pp. 41–47, 2005, ISSN: 1773-2247.
Abstract | Links | BibTeX | Tags: Carbon nanotubes, gene delivery, gene therapy, I2CT, Nanomedicine, Peptide delivery, Team-Bianco, Vaccination
@article{kostarelos_carbon_2005,
title = {Carbon nanotube-mediated delivery of peptides and genes to cells: translating nanobiotechnology to therapeutics},
author = {K Kostarelos and L Lacerda and C D Partidos and M Prato and A Bianco},
url = {http://www.sciencedirect.com/science/article/pii/S1773224705500054},
doi = {10.1016/S1773-2247(05)50005-4},
issn = {1773-2247},
year = {2005},
date = {2005-01-01},
urldate = {2020-03-31},
journal = {Journal of Drug Delivery Science and Technology},
volume = {15},
number = {1},
pages = {41--47},
abstract = {During the last few years, there has been a tremendous amount of optimism and expectation about nanotechnology and its impact on various fields including medicine and pharmaceutical development. One of the most promising materials being developed during the nanotechnological renaissance we are currently experiencing is the carbon nanotube. Before any biology-related application can even be envisaged, the aqueous solubility of carbon nanotubes has to be resolved. Recently, a variety of methodologies have been proposed which lead to biologically compatible carbon nanotubes. Covalent functionalization of their surface is one methodology, allowing the first attempts towards applications in the field of nanomedicine. The possibility of incorporating functionalized carbon nanotubes into cells and the biological milieu offers numerous advantages for potential applications in biology and pharmacology. One of the most promising is their utilization as a new carrier system for the delivery of therapeutic molecules. In the present article, the first attempts to transform carbon nanotubes from biologically incompatible nanomaterials to biologically relevant components of advanced therapeutics and the ensuing novel structures obtained in our laboratories are presented.},
keywords = {Carbon nanotubes, gene delivery, gene therapy, I2CT, Nanomedicine, Peptide delivery, Team-Bianco, Vaccination},
pubstate = {published},
tppubtype = {article}
}