Publications
2021
Leite Thiago H J F, Ferreira Alvaro G A, Imler Jean-Luc, Marques João T
Distinct Roles of Hemocytes at Different Stages of Infection by Dengue and Zika Viruses in Aedes aegypti Mosquitoes Journal Article
In: Frontiers in immunology, vol. 12, pp. 660873, 2021.
Abstract | Links | BibTeX | Tags: Aedes, Dengue, Hemocytes, imler, innate immunity, M3i, Marques, Zika
@article{Leite2021,
title = {Distinct Roles of Hemocytes at Different Stages of Infection by Dengue and Zika Viruses in Aedes aegypti Mosquitoes},
author = {Thiago H J F Leite and Alvaro G A Ferreira and Jean-Luc Imler and João T Marques},
url = {https://www.frontiersin.org/articles/10.3389/fimmu.2021.660873/full},
doi = {10.3389/fimmu.2021.660873},
year = {2021},
date = {2021-05-13},
journal = {Frontiers in immunology},
volume = {12},
pages = {660873},
abstract = {Aedes aegypti mosquitoes are vectors for arboviruses of medical importance such as dengue (DENV) and Zika (ZIKV) viruses. Different innate immune pathways contribute to the control of arboviruses in the mosquito vector including RNA interference, Toll and Jak- STAT pathways. However, the role of cellular responses mediated by circulating macrophage-like cells known as hemocytes remains unclear. Here we show that hemocytes are recruited to the midgut of Ae. aegypti mosquitoes in response to DENV or ZIKV. Blockade of the phagocytic function of hemocytes using latex beads induced increased accumulation of hemocytes in the midgut and a reduction in virus infection levels in this organ. In contrast, inhibition of phagocytosis by hemocytes led to increased systemic dissemination and replication of DENV and ZIKV. Hence, our work reveals a dual role for hemocytes in Ae. aegypti mosquitoes, whereby phagocytosis is not required to control viral infection in the midgut but is essential to restrict systemic dissemination. Further understanding of the mechanism behind this duality could help the design of vector-based strategies to prevent transmission of arboviruses.},
keywords = {Aedes, Dengue, Hemocytes, imler, innate immunity, M3i, Marques, Zika},
pubstate = {published},
tppubtype = {article}
}
2018
Olmo RP, Ferreira AGA, Izidoro-Toledo TC, Aguiar ERGR, de Faria IJS, de Souza KPR, Osório KP, Kuhn L, Hammann P, de Andrade EG, Todjro YM, Rocha MN, Leite THJF, Amadou SCG, Armache JN, Paro S, de Oliveira CD, Carvalho FD, Moreira LA, Marois E, Imler JL, Marques JT
Control of dengue virus in the midgut of Aedes aegypti by ectopic expression of the dsRNA-binding protein Loqs2 Journal Article
In: Nature Microbiology, vol. 3, no. 12, pp. 1385-1393, 2018.
Abstract | Links | BibTeX | Tags: Aedes aegypti, Dengue, imler, M3i, marois, Marques, Zika
@article{Olmo_2018,
title = {Control of dengue virus in the midgut of Aedes aegypti by ectopic expression of the dsRNA-binding protein Loqs2 },
author = {RP Olmo and AGA Ferreira and TC Izidoro-Toledo and ERGR Aguiar and IJS de Faria and KPR de Souza and KP Osório and L Kuhn and P Hammann and EG de Andrade and YM Todjro and MN Rocha and THJF Leite and SCG Amadou and JN Armache and S Paro and CD de Oliveira and FD Carvalho and LA Moreira and E Marois and JL Imler and JT Marques},
url = {https://www.nature.com/articles/s41564-018-0268-6},
doi = {10.1038/s41564-018-0268-6},
year = {2018},
date = {2018-10-29},
journal = {Nature Microbiology},
volume = {3},
number = {12},
pages = {1385-1393},
abstract = {Dengue virus (DENV) is an arbovirus transmitted to humans by Aedes mosquitoes. In the insect vector, the small interfering RNA (siRNA) pathway is an important antiviral mechanism against DENV. However, it remains unclear when and where the siRNA pathway acts during the virus cycle. Here, we show that the siRNA pathway fails to efficiently silence DENV in the midgut of Aedes aegypti although it is essential to restrict systemic replication. Accumulation of DENV-derived siRNAs in the midgut reveals that impaired silencing results from a defect downstream of small RNA biogenesis. Notably, silencing triggered by endogenous and exogenous dsRNAs remained effective in the midgut where known components of the siRNA pathway, including the double-stranded RNA (dsRNA)-binding proteins Loquacious and r2d2, had normal expression levels. We identified an Aedes-specific paralogue of loquacious and r2d2, hereafter named loqs2, which is not expressed in the midgut. Loqs2 interacts with Loquacious and r2d2 and is required to control systemic replication of DENV and also Zika virus. Furthermore, ectopic expression of Loqs2 in the midgut of transgenic mosquitoes is sufficient to restrict DENV replication and dissemination. Together, our data reveal a mechanism of tissue-specific regulation of the mosquito siRNA pathway controlled by Loqs2. },
keywords = {Aedes aegypti, Dengue, imler, M3i, marois, Marques, Zika},
pubstate = {published},
tppubtype = {article}
}
Schaeffer Evelyne, Flacher Vincent, Neuberg Patrick, Hoste Astrid, Brulefert Adrien, Fauny Jean-Daniel, Wagner Alain, Mueller Christopher G
Inhibition of dengue virus infection by mannoside glycolipid conjugates Journal Article
In: Antiviral Research, vol. 154, pp. 116–123, 2018, ISSN: 1872-9096.
Abstract | Links | BibTeX | Tags: Animals, Antiviral Agents, Cell Line, Cell Membrane, Chemistry, Chlorocebus aethiops, Dendritic Cells, Dengue, Dengue virus, development, Drug, Drug Discovery, Flavivirus, function, Fusion, Glycolipids, Health, Hep G2 Cells, Human, Humans, immunopathology, infection, inhibition, inhibitors, Inhibitory Concentration 50, lipid, Macrophages, Mannosides, Membrane, Serogroup, Skin, Team-Mueller, vaccine, Vaccines, Vero Cells, viral Infection, virus, Virus Replication
@article{schaeffer_inhibition_2018b,
title = {Inhibition of dengue virus infection by mannoside glycolipid conjugates},
author = {Evelyne Schaeffer and Vincent Flacher and Patrick Neuberg and Astrid Hoste and Adrien Brulefert and Jean-Daniel Fauny and Alain Wagner and Christopher G Mueller},
doi = {10.1016/j.antiviral.2018.04.005},
issn = {1872-9096},
year = {2018},
date = {2018-01-01},
journal = {Antiviral Research},
volume = {154},
pages = {116--123},
abstract = {Dengue virus (DENV), a mosquito-borne flavivirus, causes severe and potentially fatal symptoms in millions of infected individuals each year. Although dengue fever represents a major global public health problem, the vaccines or antiviral drugs proposed so far have not shown sufficient efficacy and safety, calling for new antiviral developments. Here we have shown that a mannoside glycolipid conjugate (MGC) bearing a trimannose head with a saturated lipid chain inhibited DENV productive infection. It showed remarkable cell promiscuity, being active in human skin dendritic cells, hepatoma cell lines and Vero cells, and was active against all four DENV serotypes, with an IC50 in the low micromolar range. Time-of-addition experiments and structure-activity analyses revealed the importance of the lipid chain to interfere with an early viral infection step. This, together with a correlation between antiviral activity and membrane polarization by the lipid moiety indicated that the inhibitor functions by blocking viral envelope fusion with the endosome membrane. These finding establish MGCs as a novel class of antivirals against the DENV.},
keywords = {Animals, Antiviral Agents, Cell Line, Cell Membrane, Chemistry, Chlorocebus aethiops, Dendritic Cells, Dengue, Dengue virus, development, Drug, Drug Discovery, Flavivirus, function, Fusion, Glycolipids, Health, Hep G2 Cells, Human, Humans, immunopathology, infection, inhibition, inhibitors, Inhibitory Concentration 50, lipid, Macrophages, Mannosides, Membrane, Serogroup, Skin, Team-Mueller, vaccine, Vaccines, Vero Cells, viral Infection, virus, Virus Replication},
pubstate = {published},
tppubtype = {article}
}
2015
Schaeffer Evelyne, Flacher Vincent, Papageorgiou Vasiliki, Decossas Marion, Fauny Jean-Daniel, Krämer Melanie, Mueller Christopher G
Dermal CD14(+) Dendritic Cell and Macrophage Infection by Dengue Virus Is Stimulated by Interleukin-4 Journal Article
In: The Journal of Investigative Dermatology, vol. 135, no. 7, pp. 1743–1751, 2015, ISSN: 1523-1747.
Abstract | Links | BibTeX | Tags: Abdominal Wall, Activation, Adhesion, adhesion molecules, Antigen-Presenting Cells, arbovirus, C-Type, Cell Adhesion, Cell Adhesion Molecules, Cell Surface, Cells, Chemistry, Confocal, Cultured, cytokine, Cytokines, cytology, Dendritic Cells, Dengue, Dengue virus, DERMAL DENDRITIC CELLS, Dermatitis, DERMIS, development, disease, Enzyme-Linked Immunosorbent Assay, Epidermal Cells, Epidermis, Human, Humans, ICAM-3, IL-4, Immunology, immunopathology, infection, Interleukin-4, Langerhans Cells, LECTIN, Lectins, Lymphocyte Activation, Macrophage, Macrophages, metabolism, Microscopy, pathogenicity, physiopathology, Receptor, Receptors, Scabies, Sensitivity and Specificity, Skin, Skin Diseases, SUBSETS, T CELL ACTIVATION, target, Team-Mueller, TNF ALPHA, Viral, viral Infection, Viral Load, virology, virus
@article{schaeffer_dermal_2015b,
title = {Dermal CD14(+) Dendritic Cell and Macrophage Infection by Dengue Virus Is Stimulated by Interleukin-4},
author = {Evelyne Schaeffer and Vincent Flacher and Vasiliki Papageorgiou and Marion Decossas and Jean-Daniel Fauny and Melanie Krämer and Christopher G Mueller},
doi = {10.1038/jid.2014.525},
issn = {1523-1747},
year = {2015},
date = {2015-07-01},
journal = {The Journal of Investigative Dermatology},
volume = {135},
number = {7},
pages = {1743--1751},
abstract = {Dengue virus (DENV) is responsible for the most prevalent arthropod-borne viral infection in humans. Events decisive for disease development occur in the skin after virus inoculation by the mosquito. Yet, the role of human dermis-resident immune cells in dengue infection and disease remains elusive. Here we investigated how dermal dendritic cells (dDCs) and macrophages (dMs) react to DENV and impact on immunopathology. We show that both CD1c(+) and CD14(+) dDC subsets were infected, but viral load greatly increased in CD14(+) dDCs upon IL-4 stimulation, which correlated with upregulation of virus-binding lectins Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Nonintegrin (DC-SIGN/CD209) and mannose receptor (CD206). IL-4 also enhanced T-cell activation by dDCs, which was further increased upon dengue infection. dMs purified from digested dermis were initially poorly infected but actively replicated the virus and produced TNF-α upon lectin upregulation in response to IL-4. DC-SIGN(+) cells are abundant in inflammatory skin with scabies infection or Th2-type dermatitis, suggesting that skin reactions to mosquito bites heighten the risk of infection and subsequent immunopathology. Our data identify dDCs and dMs as primary arbovirus target cells in humans and suggest that dDCs initiate a potent virus-directed T-cell response, whereas dMs fuel the inflammatory cascade characteristic of dengue fever.},
keywords = {Abdominal Wall, Activation, Adhesion, adhesion molecules, Antigen-Presenting Cells, arbovirus, C-Type, Cell Adhesion, Cell Adhesion Molecules, Cell Surface, Cells, Chemistry, Confocal, Cultured, cytokine, Cytokines, cytology, Dendritic Cells, Dengue, Dengue virus, DERMAL DENDRITIC CELLS, Dermatitis, DERMIS, development, disease, Enzyme-Linked Immunosorbent Assay, Epidermal Cells, Epidermis, Human, Humans, ICAM-3, IL-4, Immunology, immunopathology, infection, Interleukin-4, Langerhans Cells, LECTIN, Lectins, Lymphocyte Activation, Macrophage, Macrophages, metabolism, Microscopy, pathogenicity, physiopathology, Receptor, Receptors, Scabies, Sensitivity and Specificity, Skin, Skin Diseases, SUBSETS, T CELL ACTIVATION, target, Team-Mueller, TNF ALPHA, Viral, viral Infection, Viral Load, virology, virus},
pubstate = {published},
tppubtype = {article}
}
Schaeffer Evelyne, Flacher Vincent, Papageorgiou Vasiliki, Decossas Marion, Fauny Jean-Daniel, Krämer Melanie, Mueller Christopher G
Dermal CD14(+) Dendritic Cell and Macrophage Infection by Dengue Virus Is Stimulated by Interleukin-4 Journal Article
In: The Journal of Investigative Dermatology, vol. 135, no. 7, pp. 1743–1751, 2015, ISSN: 1523-1747.
Abstract | Links | BibTeX | Tags: Abdominal Wall, Antigen-Presenting Cells, C-Type, Cell Adhesion Molecules, Cell Surface, Cells, Confocal, Cultured, Cytokines, Dengue, Dengue virus, Enzyme-Linked Immunosorbent Assay, Epidermis, Humans, I2CT, Imagerie, Interleukin-4, Langerhans Cells, Lectins, Lymphocyte Activation, Macrophages, Microscopy, Receptors, Sensitivity and Specificity, Skin Diseases, Team-Mueller, Viral
@article{schaeffer_dermal_2015,
title = {Dermal CD14(+) Dendritic Cell and Macrophage Infection by Dengue Virus Is Stimulated by Interleukin-4},
author = {Evelyne Schaeffer and Vincent Flacher and Vasiliki Papageorgiou and Marion Decossas and Jean-Daniel Fauny and Melanie Krämer and Christopher G Mueller},
doi = {10.1038/jid.2014.525},
issn = {1523-1747},
year = {2015},
date = {2015-01-01},
journal = {The Journal of Investigative Dermatology},
volume = {135},
number = {7},
pages = {1743--1751},
abstract = {Dengue virus (DENV) is responsible for the most prevalent arthropod-borne viral infection in humans. Events decisive for disease development occur in the skin after virus inoculation by the mosquito. Yet, the role of human dermis-resident immune cells in dengue infection and disease remains elusive. Here we investigated how dermal dendritic cells (dDCs) and macrophages (dMs) react to DENV and impact on immunopathology. We show that both CD1c(+) and CD14(+) dDC subsets were infected, but viral load greatly increased in CD14(+) dDCs upon IL-4 stimulation, which correlated with upregulation of virus-binding lectins Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Nonintegrin (DC-SIGN/CD209) and mannose receptor (CD206). IL-4 also enhanced T-cell activation by dDCs, which was further increased upon dengue infection. dMs purified from digested dermis were initially poorly infected but actively replicated the virus and produced TNF-α upon lectin upregulation in response to IL-4. DC-SIGN(+) cells are abundant in inflammatory skin with scabies infection or Th2-type dermatitis, suggesting that skin reactions to mosquito bites heighten the risk of infection and subsequent immunopathology. Our data identify dDCs and dMs as primary arbovirus target cells in humans and suggest that dDCs initiate a potent virus-directed T-cell response, whereas dMs fuel the inflammatory cascade characteristic of dengue fever.},
keywords = {Abdominal Wall, Antigen-Presenting Cells, C-Type, Cell Adhesion Molecules, Cell Surface, Cells, Confocal, Cultured, Cytokines, Dengue, Dengue virus, Enzyme-Linked Immunosorbent Assay, Epidermis, Humans, I2CT, Imagerie, Interleukin-4, Langerhans Cells, Lectins, Lymphocyte Activation, Macrophages, Microscopy, Receptors, Sensitivity and Specificity, Skin Diseases, Team-Mueller, Viral},
pubstate = {published},
tppubtype = {article}
}
2008
Kwan Wing-Hong, Navarro-Sanchez Erika, Dumortier Hélène, Decossas Marion, Vachon Hortense, dos Santos Flavia Barreto, Fridman Hervé W, Rey Félix A, Harris Eva, Despres Philippe, Mueller Christopher G
Dermal-type macrophages expressing CD209/DC-SIGN show inherent resistance to dengue virus growth Journal Article
In: PLoS neglected tropical diseases, vol. 2, no. 10, pp. e311, 2008, ISSN: 1935-2735.
Abstract | Links | BibTeX | Tags: Adhesion, adhesion molecules, C-Type, Cell Adhesion, Cell Adhesion Molecules, Cell Line, Cell Surface, Cells, Chemistry, Cultured, Dendritic Cells, Dengue, Dengue virus, Gene Expression, Genetics, GLYCOPROTEIN, Growth, growth & development, Humans, ICAM-3, IFN ALPHA, IL-10, IL10, IMMATURE, Immunology, in situ, infection, LECTIN, Lectins, Macrophage, Macrophages, metabolism, METHOD, methods, monocyte, Monocytes, myeloid dendritic cells, pathogenesis, Phagosomes, PRODUCTION, Protein, Protein Binding, Proteins, Receptor, Receptors, Resistance, Skin, Team-Mueller, Viral Envelope Proteins, virology, virus
@article{kwan_dermal-type_2008b,
title = {Dermal-type macrophages expressing CD209/DC-SIGN show inherent resistance to dengue virus growth},
author = {Wing-Hong Kwan and Erika Navarro-Sanchez and Hélène Dumortier and Marion Decossas and Hortense Vachon and Flavia Barreto dos Santos and Hervé W Fridman and Félix A Rey and Eva Harris and Philippe Despres and Christopher G Mueller},
doi = {10.1371/journal.pntd.0000311},
issn = {1935-2735},
year = {2008},
date = {2008-10-01},
journal = {PLoS neglected tropical diseases},
volume = {2},
number = {10},
pages = {e311},
abstract = {BACKGROUND: An important question in dengue pathogenesis is the identity of immune cells involved in the control of dengue virus infection at the site of the mosquito bite. There is evidence that infection of immature myeloid dendritic cells plays a crucial role in dengue pathogenesis and that the interaction of the viral envelope E glycoprotein with CD209/DC-SIGN is a key element for their productive infection. Dermal macrophages express CD209, yet little is known about their role in dengue virus infection.
METHODS AND FINDINGS: Here, we showed that dermal macrophages bound recombinant envelope E glycoprotein fused to green fluorescent protein. Because dermal macrophages stain for IL-10 in situ, we generated dermal-type macrophages from monocytes in the presence of IL-10 to study their infection by dengue virus. The macrophages were able to internalize the virus, but progeny virus production was undetectable in the infected cells. In addition, no IFN-alpha was produced in response to the virus. The inability of dengue virus to grow in the macrophages was attributable to accumulation of internalized virus particles into poorly-acidified phagosomes.
CONCLUSIONS: Aborting infection by viral sequestration in early phagosomes would present a novel means to curb infection of enveloped virus and may constitute a prime defense system to prevent dengue virus spread shortly after the bite of the infected mosquito.},
keywords = {Adhesion, adhesion molecules, C-Type, Cell Adhesion, Cell Adhesion Molecules, Cell Line, Cell Surface, Cells, Chemistry, Cultured, Dendritic Cells, Dengue, Dengue virus, Gene Expression, Genetics, GLYCOPROTEIN, Growth, growth & development, Humans, ICAM-3, IFN ALPHA, IL-10, IL10, IMMATURE, Immunology, in situ, infection, LECTIN, Lectins, Macrophage, Macrophages, metabolism, METHOD, methods, monocyte, Monocytes, myeloid dendritic cells, pathogenesis, Phagosomes, PRODUCTION, Protein, Protein Binding, Proteins, Receptor, Receptors, Resistance, Skin, Team-Mueller, Viral Envelope Proteins, virology, virus},
pubstate = {published},
tppubtype = {article}
}
METHODS AND FINDINGS: Here, we showed that dermal macrophages bound recombinant envelope E glycoprotein fused to green fluorescent protein. Because dermal macrophages stain for IL-10 in situ, we generated dermal-type macrophages from monocytes in the presence of IL-10 to study their infection by dengue virus. The macrophages were able to internalize the virus, but progeny virus production was undetectable in the infected cells. In addition, no IFN-alpha was produced in response to the virus. The inability of dengue virus to grow in the macrophages was attributable to accumulation of internalized virus particles into poorly-acidified phagosomes.
CONCLUSIONS: Aborting infection by viral sequestration in early phagosomes would present a novel means to curb infection of enveloped virus and may constitute a prime defense system to prevent dengue virus spread shortly after the bite of the infected mosquito.
Kwan Wing-Hong, Navarro-Sanchez Erika, Dumortier Hélène, Decossas Marion, Vachon Hortense, dos Santos Flavia Barreto, Fridman Hervé W, Rey Félix A, Harris Eva, Despres Philippe, Mueller Christopher G
Dermal-type macrophages expressing CD209/DC-SIGN show inherent resistance to dengue virus growth Journal Article
In: PLoS neglected tropical diseases, vol. 2, no. 10, pp. e311, 2008, ISSN: 1935-2735.
Abstract | Links | BibTeX | Tags: C-Type, Cell Adhesion Molecules, Cell Line, Cell Surface, Cells, Cultured, Dengue, Dengue virus, Dumortier, Gene Expression, Humans, I2CT, Lectins, Macrophages, Protein Binding, Receptors, Skin, Team-Dumortier, Team-Mueller, Viral Envelope Proteins
@article{kwan_dermal-type_2008,
title = {Dermal-type macrophages expressing CD209/DC-SIGN show inherent resistance to dengue virus growth},
author = {Wing-Hong Kwan and Erika Navarro-Sanchez and Hélène Dumortier and Marion Decossas and Hortense Vachon and Flavia Barreto dos Santos and Hervé W Fridman and Félix A Rey and Eva Harris and Philippe Despres and Christopher G Mueller},
doi = {10.1371/journal.pntd.0000311},
issn = {1935-2735},
year = {2008},
date = {2008-01-01},
journal = {PLoS neglected tropical diseases},
volume = {2},
number = {10},
pages = {e311},
abstract = {BACKGROUND: An important question in dengue pathogenesis is the identity of immune cells involved in the control of dengue virus infection at the site of the mosquito bite. There is evidence that infection of immature myeloid dendritic cells plays a crucial role in dengue pathogenesis and that the interaction of the viral envelope E glycoprotein with CD209/DC-SIGN is a key element for their productive infection. Dermal macrophages express CD209, yet little is known about their role in dengue virus infection.
METHODS AND FINDINGS: Here, we showed that dermal macrophages bound recombinant envelope E glycoprotein fused to green fluorescent protein. Because dermal macrophages stain for IL-10 in situ, we generated dermal-type macrophages from monocytes in the presence of IL-10 to study their infection by dengue virus. The macrophages were able to internalize the virus, but progeny virus production was undetectable in the infected cells. In addition, no IFN-alpha was produced in response to the virus. The inability of dengue virus to grow in the macrophages was attributable to accumulation of internalized virus particles into poorly-acidified phagosomes.
CONCLUSIONS: Aborting infection by viral sequestration in early phagosomes would present a novel means to curb infection of enveloped virus and may constitute a prime defense system to prevent dengue virus spread shortly after the bite of the infected mosquito.},
keywords = {C-Type, Cell Adhesion Molecules, Cell Line, Cell Surface, Cells, Cultured, Dengue, Dengue virus, Dumortier, Gene Expression, Humans, I2CT, Lectins, Macrophages, Protein Binding, Receptors, Skin, Team-Dumortier, Team-Mueller, Viral Envelope Proteins},
pubstate = {published},
tppubtype = {article}
}
METHODS AND FINDINGS: Here, we showed that dermal macrophages bound recombinant envelope E glycoprotein fused to green fluorescent protein. Because dermal macrophages stain for IL-10 in situ, we generated dermal-type macrophages from monocytes in the presence of IL-10 to study their infection by dengue virus. The macrophages were able to internalize the virus, but progeny virus production was undetectable in the infected cells. In addition, no IFN-alpha was produced in response to the virus. The inability of dengue virus to grow in the macrophages was attributable to accumulation of internalized virus particles into poorly-acidified phagosomes.
CONCLUSIONS: Aborting infection by viral sequestration in early phagosomes would present a novel means to curb infection of enveloped virus and may constitute a prime defense system to prevent dengue virus spread shortly after the bite of the infected mosquito.