Publications
2014
Flacher Vincent, Tripp Christoph H, Mairhofer David G, Steinman Ralph M, Stoitzner Patrizia, Idoyaga Juliana, Romani Nikolaus
Murine Langerin+ dermal dendritic cells prime CD8+ Ŧ cells while Langerhans cells induce cross-tolerance Journal Article
In: EMBO molecular medicine, vol. 6, no. 9, pp. 1191–1204, 2014, ISSN: 1757-4684.
Abstract | Links | BibTeX | Tags: agonists, Animals, Antibodies, antibody, Antigen, Antigen Presentation, Antigens, C-Type, C-type lectin, cancer, CD70, CD8-Positive T-Lymphocytes, CD8+ T cells, CD8+ T‐cell responses, Cellular, CROSS-PRESENTATION, Cross-Priming, Cytotoxicity, Dendritic Cells, DERMAL DENDRITIC CELLS, DERMATOLOGY, disease, imiquimod, Immunization, IMMUNOGENICITY, Immunologic Memory, Immunological, Immunology, In vivo, Inbred C57BL, INDUCTION, Intradermal, Langerhans Cells, LECTIN, Lectins, Mannose-Binding Lectins, Maturation, Mice, Models, murine, OVALBUMIN, physiology, priming, RESPONSES, Skin, Surface, T CELLS, T-CELLS, Team-Mueller, tolerance, Vaccination, vaccine, Vaccines
@article{flacher_murine_2014,
title = {Murine Langerin+ dermal dendritic cells prime CD8+ Ŧ cells while Langerhans cells induce cross-tolerance},
author = {Vincent Flacher and Christoph H Tripp and David G Mairhofer and Ralph M Steinman and Patrizia Stoitzner and Juliana Idoyaga and Nikolaus Romani},
doi = {10.15252/emmm.201303283},
issn = {1757-4684},
year = {2014},
date = {2014-09-01},
journal = {EMBO molecular medicine},
volume = {6},
number = {9},
pages = {1191--1204},
abstract = {Skin dendritic cells (DCs) control the immunogenicity of cutaneously administered vaccines. Antigens targeted to DCs via the C-type lectin Langerin/CD207 are cross-presented to CD8(+) T cells in vivo. We investigated the relative roles of Langerhans cells (LCs) and Langerin(+) dermal DCs (dDCs) in different vaccination settings. Poly(I:C) and anti-CD40 agonist antibody promoted cytotoxic responses upon intradermal immunization with ovalbumin (OVA)-coupled anti-Langerin antibodies (Langerin/OVA). This correlated with CD70 upregulation in Langerin(+) dDCs, but not LCs. In chimeric mice where Langerin targeting was restricted to dDCs, CD8(+) T-cell memory was enhanced. Conversely, providing Langerin/OVA exclusively to LCs failed to prime cytotoxicity, despite initial antigen cross-presentation to CD8(+) T cells. Langerin/OVA combined with imiquimod could not prime CD8(+) T cells and resulted in poor cytotoxicity in subsequent responses. This tolerance induction required targeting and maturation of LCs. Altogether, Langerin(+) dDCs prime long-lasting cytotoxic responses, while cross-presentation by LCs negatively influences CD8(+) T-cell priming. Moreover, this highlights that DCs exposed to TLR agonists can still induce tolerance and supports the existence of qualitatively different DC maturation programs.},
keywords = {agonists, Animals, Antibodies, antibody, Antigen, Antigen Presentation, Antigens, C-Type, C-type lectin, cancer, CD70, CD8-Positive T-Lymphocytes, CD8+ T cells, CD8+ T‐cell responses, Cellular, CROSS-PRESENTATION, Cross-Priming, Cytotoxicity, Dendritic Cells, DERMAL DENDRITIC CELLS, DERMATOLOGY, disease, imiquimod, Immunization, IMMUNOGENICITY, Immunologic Memory, Immunological, Immunology, In vivo, Inbred C57BL, INDUCTION, Intradermal, Langerhans Cells, LECTIN, Lectins, Mannose-Binding Lectins, Maturation, Mice, Models, murine, OVALBUMIN, physiology, priming, RESPONSES, Skin, Surface, T CELLS, T-CELLS, Team-Mueller, tolerance, Vaccination, vaccine, Vaccines},
pubstate = {published},
tppubtype = {article}
}
Voisin Benjamin, Mairhofer David Gabriel, Chen Suzie, Stoitzner Patrizia, Mueller Christopher George, Flacher Vincent
Anatomical distribution analysis reveals lack of Langerin+ dermal dendritic cells in footpads and tail of C57BL/6 mice Journal Article
In: Experimental Dermatology, vol. 23, no. 5, pp. 354–356, 2014, ISSN: 1600-0625.
Abstract | Links | BibTeX | Tags: Analysis, Animals, Antigen, Antigens, C-Type, CD, CD11c Antigen, Cell Adhesion Molecules, Dendritic Cells, DERMAL DENDRITIC CELLS, Epithelial Cell Adhesion Molecule, footpad skin, function, Hindlimb, immunopathology, Inbred BALB C, Inbred C57BL, Inbred CBA, inflammation, Integrin alpha Chains, Langerhans Cells, Lectins, Letter, Leukocyte Common Antigens, LYMPH, LYMPH NODE, Lymph Nodes, Mannose-Binding Lectins, Mice, mouse, Neoplasm, Skin, skin-draining lymph nodes, Surface, T CELLS, T-CELLS, Tail, tail skin, Team-Mueller
@article{voisin_anatomical_2014,
title = {Anatomical distribution analysis reveals lack of Langerin+ dermal dendritic cells in footpads and tail of C57BL/6 mice},
author = {Benjamin Voisin and David Gabriel Mairhofer and Suzie Chen and Patrizia Stoitzner and Christopher George Mueller and Vincent Flacher},
doi = {10.1111/exd.12373},
issn = {1600-0625},
year = {2014},
date = {2014-01-01},
journal = {Experimental Dermatology},
volume = {23},
number = {5},
pages = {354--356},
abstract = {Epidermal Langerhans cells (LCs) and dermal dendritic cells (dDCs) capture cutaneous antigens and present them to T-cells in lymph nodes (LNs). The function of LCs and Langerin+ dDCs was extensively studied in the mouse, but their anatomical repartition is unknown. Here, we found LCs in back skin, footpads and tail skin of C57BL/6, BALB/c, 129/Sv and CBA/J mice. Langerin+ dDCs were readily observed in back skin of all strains, but only in footpads and tail of BALB/c and CBA/J mice. Similarly, while LCs were equally present in all LNs and strains, Langerin+ dDCs were found in popliteal LNs (draining footpads) only in BALB/c and CBA/J mice. The sciatic LNs, which we identified as the major tail-draining lymphoid organ, were devoid of Langerin+ dDCs in all strains. Thus, functionally different DCs reside in different skin areas, with variations among mouse strains, implying a potential impact on the cutaneous immune reaction.},
keywords = {Analysis, Animals, Antigen, Antigens, C-Type, CD, CD11c Antigen, Cell Adhesion Molecules, Dendritic Cells, DERMAL DENDRITIC CELLS, Epithelial Cell Adhesion Molecule, footpad skin, function, Hindlimb, immunopathology, Inbred BALB C, Inbred C57BL, Inbred CBA, inflammation, Integrin alpha Chains, Langerhans Cells, Lectins, Letter, Leukocyte Common Antigens, LYMPH, LYMPH NODE, Lymph Nodes, Mannose-Binding Lectins, Mice, mouse, Neoplasm, Skin, skin-draining lymph nodes, Surface, T CELLS, T-CELLS, Tail, tail skin, Team-Mueller},
pubstate = {published},
tppubtype = {article}
}
2013
Quintin Jessica, Asmar Joelle, Matskevich Alexey A, Lafarge Marie-Céline, Ferrandon Dominique
The Drosophila Toll pathway controls but does not clear Candida glabrata infections Journal Article
In: J. Immunol., vol. 190, no. 6, pp. 2818–2827, 2013, ISSN: 1550-6606.
Abstract | Links | BibTeX | Tags: Adaptor Proteins, Animal, Animals, Antigens, Candida glabrata, Candidiasis, Cells, Cultured, Differentiation, Disease Models, ferrandon, Immunologic, M3i, Phagocytosis, Receptors, Signal Transducing, Signal Transduction, Toll-Like Receptors, Virulence
@article{quintin_drosophila_2013b,
title = {The Drosophila Toll pathway controls but does not clear Candida glabrata infections},
author = {Jessica Quintin and Joelle Asmar and Alexey A Matskevich and Marie-Céline Lafarge and Dominique Ferrandon},
doi = {10.4049/jimmunol.1201861},
issn = {1550-6606},
year = {2013},
date = {2013-03-01},
journal = {J. Immunol.},
volume = {190},
number = {6},
pages = {2818--2827},
abstract = {The pathogenicity of Candida glabrata to patients remains poorly understood for lack of convenient animal models to screen large numbers of mutants for altered virulence. In this study, we explore the minihost model Drosophila melanogaster from the dual perspective of host and pathogen. As in vertebrates, wild-type flies contain C. glabrata systemic infections yet are unable to kill the injected yeasts. As for other fungal infections in Drosophila, the Toll pathway restrains C. glabrata proliferation. Persistent C. glabrata yeasts in wild-type flies do not appear to be able to take shelter in hemocytes from the action of the Toll pathway, the effectors of which remain to be identified. Toll pathway mutant flies succumb to injected C. glabrata. In this immunosuppressed background, cellular defenses provide a residual level of protection. Although both the Gram-negative binding protein 3 pattern recognition receptor and the Persephone protease-dependent detection pathway are required for Toll pathway activation by C. glabrata, only GNBP3, and not psh mutants, are susceptible to the infection. Both Candida albicans and C. glabrata are restrained by the Toll pathway, yet the comparative study of phenoloxidase activation reveals a differential activity of the Toll pathway against these two fungal pathogens. Finally, we establish that the high-osmolarity glycerol pathway and yapsins are required for virulence of C. glabrata in this model. Unexpectedly, yapsins do not appear to be required to counteract the cellular immune response but are needed for the colonization of the wild-type host.},
keywords = {Adaptor Proteins, Animal, Animals, Antigens, Candida glabrata, Candidiasis, Cells, Cultured, Differentiation, Disease Models, ferrandon, Immunologic, M3i, Phagocytosis, Receptors, Signal Transducing, Signal Transduction, Toll-Like Receptors, Virulence},
pubstate = {published},
tppubtype = {article}
}
Ayyaz Arshad, Giammarinaro Philippe, Liégeois Samuel, Lestradet Matthieu, Ferrandon Dominique
In: Immunobiology, vol. 218, no. 4, pp. 635–644, 2013, ISSN: 1878-3279.
Abstract | Links | BibTeX | Tags: Adaptor Proteins, Animal, Animals, Antigens, Differentiation, Disease Models, ferrandon, Immunity, Immunologic, Innate, Intestinal Diseases, M3i, Mucosal, Mutation, Receptors, Signal Transducing, Staphylococcal Infections, Staphylococcus, Starvation, Toll-Like Receptors
@article{ayyaz_negative_2013b,
title = {A negative role for MyD88 in the resistance to starvation as revealed in an intestinal infection of Drosophila melanogaster with the Gram-positive bacterium Staphylococcus xylosus},
author = {Arshad Ayyaz and Philippe Giammarinaro and Samuel Liégeois and Matthieu Lestradet and Dominique Ferrandon},
doi = {10.1016/j.imbio.2012.07.027},
issn = {1878-3279},
year = {2013},
date = {2013-01-01},
journal = {Immunobiology},
volume = {218},
number = {4},
pages = {635--644},
abstract = {Drosophila melanogaster is a useful model to investigate mucosal immunity. The immune response to intestinal infections is mediated partly by the Immune deficiency (IMD) pathway, which only gets activated by a type of peptidoglycan lacking in several medically important Gram-positive bacterial species such as Staphylococcus. Thus, the intestinal host defense against such bacterial strains remains poorly known. Here, we have used Staphylococcus xylosus to develop a model of intestinal infections by Gram-positive bacteria. S. xylosus behaves as an opportunistic pathogen in a septic injury model, being able to kill only flies immunodeficient either for the Toll pathway or the cellular response. When ingested, it is controlled by IMD-independent host intestinal defenses, yet flies eventually die. Having excluded an overreaction of the immune response and the action of toxins, we find that flies actually succumb to starvation, likely as a result of a competition for sucrose between the bacteria and the flies. Fat stores of wild-type flies are severely reduced within a day, a period when sucrose is not yet exhausted in the feeding solution. Interestingly, the Toll pathway mutant MyD88 is more resistant to the ingestion of S. xylosus and to starvation than wild-type flies. MyD88 flies do not rapidly deplete their fat stores when starved, in contrast to wild-type flies. Thus, we have uncovered a novel function of MyD88 in the regulation of metabolism that appears to be independent of its known roles in immunity and development.},
keywords = {Adaptor Proteins, Animal, Animals, Antigens, Differentiation, Disease Models, ferrandon, Immunity, Immunologic, Innate, Intestinal Diseases, M3i, Mucosal, Mutation, Receptors, Signal Transducing, Staphylococcal Infections, Staphylococcus, Starvation, Toll-Like Receptors},
pubstate = {published},
tppubtype = {article}
}
2012
Flacher V, Tripp C H, Haid B, Kissenpfennig A, Malissen B, Stoitzner P, Idoyaga J, Romani N
Skin langerin+ dendritic cells transport intradermally injected anti-DEC-205 antibodies but are not essential for subsequent cytotoxic CD8+ Ŧ cell responses Journal Article
In: Journal of Immunology, vol. 188, no. 1550-6606 (Electronic), pp. 2146–2155, 2012.
Abstract | BibTeX | Tags: administration & dosage, Animals, Antibodies, antibody, Antigen, Antigens, Biosynthesis, C-Type, C-type lectin, CD, Cell Surface, Comparative Study, Cytotoxic, Dendritic Cells, DERMATOLOGY, Gene Knock-In Techniques, Genetics, imiquimod, immune response, IMMUNE-RESPONSES, Immunization, Immunology, in situ, In vivo, Inbred BALB C, Inbred C57BL, INDUCTION, inflammation, Inflammation Mediators, Injections, Intradermal, knock-in, Langerhans Cells, LECTIN, Lectins, LYMPH, LYMPH NODE, Lymph Nodes, LYMPHATIC VESSEL, Lymphatic Vessels, mAb, Mannose-Binding Lectins, MEDIATOR, metabolism, Mice, Minor Histocompatibility Antigens, mouse, murine, Organ Culture Techniques, Ovum, pathology, physiology, Protein, Protein Transport, Rats, Receptor, Receptors, RESPONSES, Skin, SUBSETS, Surface, T-Lymphocytes, target, Team-Mueller, TLR7, transgenic
@article{flacher_skin_2012,
title = {Skin langerin+ dendritic cells transport intradermally injected anti-DEC-205 antibodies but are not essential for subsequent cytotoxic CD8+ Ŧ cell responses},
author = {V Flacher and C H Tripp and B Haid and A Kissenpfennig and B Malissen and P Stoitzner and J Idoyaga and N Romani},
year = {2012},
date = {2012-03-01},
journal = {Journal of Immunology},
volume = {188},
number = {1550-6606 (Electronic)},
pages = {2146--2155},
abstract = {Incorporation of Ags by dendritic cells (DCs) increases when Ags are targeted to endocytic receptors by mAbs. We have previously demonstrated in the mouse that mAbs against C-type lectins administered intradermally are taken up by epidermal Langerhans cells (LCs), dermal Langerin(neg) DCs, and dermal Langerin(+) DCs in situ. However, the relative contribution of these skin DC subsets to the induction of immune responses after Ag targeting has not been addressed in vivo. We show in this study that murine epidermal LCs and dermal DCs transport intradermally injected mAbs against the lectin receptor DEC-205/CD205 in vivo. Skin DCs targeted in situ with mAbs migrated through lymphatic vessels in steady state and inflammation. In the skin-draining lymph nodes, targeting mAbs were found in resident CD8alpha(+) DCs and in migrating skin DCs. More than 70% of targeted DCs expressed Langerin, including dermal Langerin(+) DCs and LCs. Numbers of targeted skin DCs in the nodes increased 2-3-fold when skin was topically inflamed by the TLR7 agonist imiquimod. Complete removal of the site where OVA-coupled anti-DEC-205 had been injected decreased endogenous cytotoxic responses against OVA peptide-loaded target cells by 40-50%. Surprisingly, selective ablation of all Langerin(+) skin DCs in Langerin-DTR knock-in mice did not affect such responses independently of the adjuvant chosen. Thus, in cutaneous immunization strategies where Ag is targeted to DCs, Langerin(+) skin DCs play a major role in transport of anti-DEC-205 mAb, although Langerin(neg) dermal DCs and CD8alpha(+) DCs are sufficient to subsequent CD8(+) T cell responses},
keywords = {administration & dosage, Animals, Antibodies, antibody, Antigen, Antigens, Biosynthesis, C-Type, C-type lectin, CD, Cell Surface, Comparative Study, Cytotoxic, Dendritic Cells, DERMATOLOGY, Gene Knock-In Techniques, Genetics, imiquimod, immune response, IMMUNE-RESPONSES, Immunization, Immunology, in situ, In vivo, Inbred BALB C, Inbred C57BL, INDUCTION, inflammation, Inflammation Mediators, Injections, Intradermal, knock-in, Langerhans Cells, LECTIN, Lectins, LYMPH, LYMPH NODE, Lymph Nodes, LYMPHATIC VESSEL, Lymphatic Vessels, mAb, Mannose-Binding Lectins, MEDIATOR, metabolism, Mice, Minor Histocompatibility Antigens, mouse, murine, Organ Culture Techniques, Ovum, pathology, physiology, Protein, Protein Transport, Rats, Receptor, Receptors, RESPONSES, Skin, SUBSETS, Surface, T-Lymphocytes, target, Team-Mueller, TLR7, transgenic},
pubstate = {published},
tppubtype = {article}
}
Romani N, Flacher V, Tripp C H, Sparber F, Ebner S, Stoitzner P
Targeting skin dendritic cells to improve intradermal vaccination Journal Article
In: Current Topics in Microbiology and Immunology, vol. 351, pp. 113–138, 2012, ISSN: 0070-217X.
Abstract | Links | BibTeX | Tags: Adaptive Immunity, administration & dosage, Analysis, Animals, Antibodies, antibody, Antigen, ANTIGEN PRESENTING CELLS, Antigen-Presenting Cells, Antigens, B CELLS, B-Lymphocytes, Bacterial Infections, Biosynthesis, C-Type, CD, CD14, CD1a, Cell Lineage, cytokine, Cytokines, cytology, Cytotoxic, Dendritic Cells, DERMATOLOGY, DERMIS, Drug Delivery Systems, Expression, Human, Humans, Immunity, Immunology, INDUCTION, Injections, Innate, Intradermal, Langerhans Cells, LECTIN, Lectins, Lymphocyte Activation, Lymphocytes, Mannose-Binding Lectins, methods, Mice, mouse, Muscle, prevention & control, PRODUCTION, Protein, review, Skin, SUBSETS, T-Lymphocytes, Team-Mueller, tolerance, Vaccination, vaccine, Vaccines, Virus Diseases
@article{romani_targeting_2012,
title = {Targeting skin dendritic cells to improve intradermal vaccination},
author = {N Romani and V Flacher and C H Tripp and F Sparber and S Ebner and P Stoitzner},
doi = {10.1007/82_2010_118},
issn = {0070-217X},
year = {2012},
date = {2012-01-01},
journal = {Current Topics in Microbiology and Immunology},
volume = {351},
pages = {113--138},
abstract = {Vaccinations in medicine are typically administered into the muscle beneath the skin or into the subcutaneous fat. As a consequence, the vaccine is immunologically processed by antigen-presenting cells of the skin or the muscle. Recent evidence suggests that the clinically seldom used intradermal route is effective and possibly even superior to the conventional subcutaneous or intramuscular route. Several types of professional antigen-presenting cells inhabit the healthy skin. Epidermal Langerhans cells (CD207/langerin(+)), dermal langerin(neg), and dermal langerin(+) dendritic cells (DC) have been described, the latter subset so far only in mouse skin. In human skin langerin(neg) dermal DC can be further classified based on their reciprocal expression of CD1a and CD14. The relative contributions of these subsets to the generation of immunity or tolerance are still unclear. Yet, specializations of these different populations have become apparent. Langerhans cells in human skin appear to be specialized for induction of cytotoxic T lymphocytes; human CD14(+) dermal DC can promote antibody production by B cells. It is currently attempted to rationally devise and improve vaccines by harnessing such specific properties of skin DC. This could be achieved by specifically targeting functionally diverse skin DC subsets. We discuss here advances in our knowledge on the immunological properties of skin DC and strategies to significantly improve the outcome of vaccinations by applying this knowledge.},
keywords = {Adaptive Immunity, administration & dosage, Analysis, Animals, Antibodies, antibody, Antigen, ANTIGEN PRESENTING CELLS, Antigen-Presenting Cells, Antigens, B CELLS, B-Lymphocytes, Bacterial Infections, Biosynthesis, C-Type, CD, CD14, CD1a, Cell Lineage, cytokine, Cytokines, cytology, Cytotoxic, Dendritic Cells, DERMATOLOGY, DERMIS, Drug Delivery Systems, Expression, Human, Humans, Immunity, Immunology, INDUCTION, Injections, Innate, Intradermal, Langerhans Cells, LECTIN, Lectins, Lymphocyte Activation, Lymphocytes, Mannose-Binding Lectins, methods, Mice, mouse, Muscle, prevention & control, PRODUCTION, Protein, review, Skin, SUBSETS, T-Lymphocytes, Team-Mueller, tolerance, Vaccination, vaccine, Vaccines, Virus Diseases},
pubstate = {published},
tppubtype = {article}
}
2011
Venturelli Enrica, Fabbro Chiara, Chaloin Olivier, Ménard-Moyon Cécilia, Smulski Cristian R, Ros Tatiana Da, Kostarelos Kostas, Prato Maurizio, Bianco Alberto
Antibody covalent immobilization on carbon nanotubes and assessment of antigen binding Journal Article
In: Small (Weinheim an Der Bergstrasse, Germany), vol. 7, no. 15, pp. 2179–2187, 2011, ISSN: 1613-6829.
Abstract | Links | BibTeX | Tags: Antibodies, Antigens, carbon, I2CT, Immobilized, Mucin-1, nanotechnology, Nanotubes, Protein Binding, Team-Bianco, Thermogravimetry
@article{venturelli_antibody_2011,
title = {Antibody covalent immobilization on carbon nanotubes and assessment of antigen binding},
author = {Enrica Venturelli and Chiara Fabbro and Olivier Chaloin and Cécilia Ménard-Moyon and Cristian R Smulski and Tatiana Da Ros and Kostas Kostarelos and Maurizio Prato and Alberto Bianco},
doi = {10.1002/smll.201100137},
issn = {1613-6829},
year = {2011},
date = {2011-08-01},
journal = {Small (Weinheim an Der Bergstrasse, Germany)},
volume = {7},
number = {15},
pages = {2179--2187},
abstract = {Controlling the covalent bonding of antibodies onto functionalized carbon nanotubes is a key step in the design and preparation of nanotube-based conjugates for targeting cancer cells. For this purpose, an anti-MUC1 antibody (Ab) is linked to both multi-walled (MWCNTs) and double-walled carbon nanotubes (DWCNTs) using different synthetic strategies. The presence of the Ab attached to the nanotubes is confirmed by gel electrophoresis and thermogravimetric analysis. Most importantly, molecular recognition of the antigen by surface plasmon resonance is able to determine similar Ab binding capacities for both Ab-DWCNTs and Ab-MWCNTs. These results are very relevant for the design of future receptor-targeting strategies using chemically functionalized carbon nanotubes.},
keywords = {Antibodies, Antigens, carbon, I2CT, Immobilized, Mucin-1, nanotechnology, Nanotubes, Protein Binding, Team-Bianco, Thermogravimetry},
pubstate = {published},
tppubtype = {article}
}
Banchet-Cadeddu Aline, Hénon Eric, Dauchez Manuel, Renault Jean-Hugues, Monneaux Fanny, Haudrechy Arnaud
The stimulating adventure of KRN 7000 Journal Article
In: Organic & Biomolecular Chemistry, vol. 9, no. 9, pp. 3080–3104, 2011, ISSN: 1477-0539.
Abstract | Links | BibTeX | Tags: Adjuvants, Animals, Antigen, Antigens, CD1d, Galactosylceramides, Helper-Inducer, Humans, I2CT, Immunologic, Monneaux, Receptors, T-Cell, T-Lymphocytes, Team-Dumortier
@article{banchet-cadeddu_stimulating_2011,
title = {The stimulating adventure of KRN 7000},
author = {Aline Banchet-Cadeddu and Eric Hénon and Manuel Dauchez and Jean-Hugues Renault and Fanny Monneaux and Arnaud Haudrechy},
doi = {10.1039/c0ob00975j},
issn = {1477-0539},
year = {2011},
date = {2011-01-01},
journal = {Organic & Biomolecular Chemistry},
volume = {9},
number = {9},
pages = {3080--3104},
abstract = {Associated with the CD1d protein, KRN 7000, a potent synthetic α-galactosylceramide, is known to activate the invariant NKT immune cells. This stimulation then leads to the production of different cytokines modulating a T(H)1/T(H)2 immune response balance involved in protection against several pathologies such as autoimmune diseases and cancers. Various efforts have been made toward the synthesis of simple and more functionalized analogues in order to selectively induce T(H)1 or T(H)2-type cytokine production. Since the discovery of KRN 7000, structure-activity relationships, crystallographic and modelling studies have pointed to the potential of several GalCer analogues in term of selective bioactivity, and have highlighted interesting elements in order to better understand the recognition and activation mechanisms of immune iNKT cells. By presenting an up-to-date library of analogues, collecting recent breakthroughs done in crystallography and molecular modelling, and relating them to the available biological results, we hope that this review will highlight and help the scientific community in their KRN research.},
keywords = {Adjuvants, Animals, Antigen, Antigens, CD1d, Galactosylceramides, Helper-Inducer, Humans, I2CT, Immunologic, Monneaux, Receptors, T-Cell, T-Lymphocytes, Team-Dumortier},
pubstate = {published},
tppubtype = {article}
}
Canard B, Vachon H, Fontaine T, Pin J J, Paul S, Genin C, Mueller C G
Generation of anti-DC-SIGN monoclonal antibodies capable of blocking HIV-1 gp120 binding and reactive on formalin-fixed tissue Journal Article
In: Immunol.Lett., vol. 135, no. 1879-0542 (Electronic), pp. 165–172, 2011.
Abstract | BibTeX | Tags: Adhesion, adhesion molecules, Animals, Antibodies, antibody, Antigen, Antigens, Blocking, C-Type, C-type lectin, CD, Cell Adhesion, Cell Adhesion Molecules, Cell Surface, Chemistry, clones, Dendritic Cells, DERMIS, Differentiation, Fixatives, Formaldehyde, formalin-fixed tissue, Genetics, GLYCOPROTEIN, GP120, HeLa Cells, HIV, HIV Envelope Protein gp120, HIV-1, Human, Humans, hybridoma, ICAM-3, immunodeficiency, Immunology, Inbred BALB C, infection, LECTIN, Lectins, Macrophage, Macrophages, Mice, Monoclonal, monoclonal antibody, MONOCLONAL-ANTIBODY, Monocytes, Murine-Derived, Myelomonocytic, Nih 3T3 Cells, Paraffin Embedding, pathogenicity, Protein, Receptor, Receptors, recognition, Skin, Team-Mueller, virus
@article{canard_generation_2011,
title = {Generation of anti-DC-SIGN monoclonal antibodies capable of blocking HIV-1 gp120 binding and reactive on formalin-fixed tissue},
author = {B Canard and H Vachon and T Fontaine and J J Pin and S Paul and C Genin and C G Mueller},
year = {2011},
date = {2011-01-01},
journal = {Immunol.Lett.},
volume = {135},
number = {1879-0542 (Electronic)},
pages = {165--172},
abstract = {DC-SIGN is a C-type lectin of recognized importance in immunology and in the pathogenicity human pathogens. Monoclonal antibodies directed against DC-SIGN have been generated, but their systemic characterization for interfering with binding of the HIV-1 glycoprotein 120 has often been omitted. Moreover, so far, no anti-DC-SIGN monoclonal antibody has been described that recognizes its antigen after formalin fixation and paraffin embedding. In this study, we have generated new anti-DC-SIGN monoclonal antibodies using HeLa cells stably expressing DC-SIGN as immunogen. We have obtained 11 hybridoma clones producing antibodies that recognized DC-SIGN on monocyte-derived dendritic cells and on dermal-type macrophages. Seven monoclonal antibodies displayed a capacity to interfere with DC-SIGN binding to HIV-1 gp120. One recognized DC-SIGN on formalin-fixed dendritic cells and macrophages. Using this antibody we have obtained specific labelling of DC-SIGN and colocalisation with the dermal macrophage marker CD163 on human skin. The described monoclonal anti-human DC-SIGN antibodies will be of use to the scientific community to address fundamental immunology issues, in particular concerning macrophages and dendritic cells, and help elucidate infection events of pathogen targeting DC-SIGN as recognition receptor},
keywords = {Adhesion, adhesion molecules, Animals, Antibodies, antibody, Antigen, Antigens, Blocking, C-Type, C-type lectin, CD, Cell Adhesion, Cell Adhesion Molecules, Cell Surface, Chemistry, clones, Dendritic Cells, DERMIS, Differentiation, Fixatives, Formaldehyde, formalin-fixed tissue, Genetics, GLYCOPROTEIN, GP120, HeLa Cells, HIV, HIV Envelope Protein gp120, HIV-1, Human, Humans, hybridoma, ICAM-3, immunodeficiency, Immunology, Inbred BALB C, infection, LECTIN, Lectins, Macrophage, Macrophages, Mice, Monoclonal, monoclonal antibody, MONOCLONAL-ANTIBODY, Monocytes, Murine-Derived, Myelomonocytic, Nih 3T3 Cells, Paraffin Embedding, pathogenicity, Protein, Receptor, Receptors, recognition, Skin, Team-Mueller, virus},
pubstate = {published},
tppubtype = {article}
}
2010
Noordegraaf Madelon, Flacher Vincent, Stoitzner Patrizia, Clausen Björn E
Functional redundancy of Langerhans cells and Langerin+ dermal dendritic cells in contact hypersensitivity Journal Article
In: The Journal of Investigative Dermatology, vol. 130, no. 12, pp. 2752–2759, 2010, ISSN: 1523-1747.
Abstract | Links | BibTeX | Tags: Animal, Animals, Antigen, Antigens, C-Type, CHS, contact, CONTACT HYPERSENSITIVITY, Dendritic Cells, DEPLETION, DERMAL DENDRITIC CELLS, Dermatitis, DERMIS, Diphtheria Toxin, Disease Models, Epidermis, function, Gene Knock-In Techniques, Genetics, Growth, HAPTEN, Haptens, Heparin-binding EGF-like Growth Factor, Hypersensitivity, Immunology, Inbred C57BL, INDUCTION, Intercellular Signaling Peptides and Proteins, LACKING, Langerhans Cells, LECTIN, Lectins, LYMPH, LYMPH NODE, Lymph Nodes, Mannose-Binding Lectins, metabolism, Mice, mouse, Mutant Strains, Organ Culture Techniques, pathology, Peptides, Poisons, Protein, Proteins, RESPONSES, signaling, Skin, Surface, Team-Mueller, Toxicity
@article{noordegraaf_functional_2010,
title = {Functional redundancy of Langerhans cells and Langerin+ dermal dendritic cells in contact hypersensitivity},
author = {Madelon Noordegraaf and Vincent Flacher and Patrizia Stoitzner and Björn E Clausen},
doi = {10.1038/jid.2010.223},
issn = {1523-1747},
year = {2010},
date = {2010-12-01},
journal = {The Journal of Investigative Dermatology},
volume = {130},
number = {12},
pages = {2752--2759},
abstract = {The relative roles of Langerhans cells (LC), dermal dendritic cells (DC), and, in particular, the recently discovered Langerin(+) dermal DC subset in the induction and control of contact hypersensitivity (CHS) responses remain controversial. Using an inducible mouse model, in which LC and other Langerin(+) DC can be depleted by injection of diphtheria toxin, we previously reported impaired transport of topically applied antigen to draining lymph nodes and reduced CHS in the absence of all Langerin(+) skin DC. In this study, we demonstrate that mice with a selective depletion of LC exhibit attenuated CHS only upon sensitization with a low hapten dose but not with a high hapten dose. In contrast, when painting a higher concentration of hapten onto the skin, which leads to increased antigen dissemination into the dermis, CHS is still diminished in mice lacking all Langerin(+) skin DC. Taken together, these data suggest that the magnitude of a CHS reaction depends on the number of skin DC, which have access to the hapten, rather than on the presence or absence of a particular skin DC population. LC and (Langerin(+)) dermal DC thus seem to have a redundant function in regulating CHS.},
keywords = {Animal, Animals, Antigen, Antigens, C-Type, CHS, contact, CONTACT HYPERSENSITIVITY, Dendritic Cells, DEPLETION, DERMAL DENDRITIC CELLS, Dermatitis, DERMIS, Diphtheria Toxin, Disease Models, Epidermis, function, Gene Knock-In Techniques, Genetics, Growth, HAPTEN, Haptens, Heparin-binding EGF-like Growth Factor, Hypersensitivity, Immunology, Inbred C57BL, INDUCTION, Intercellular Signaling Peptides and Proteins, LACKING, Langerhans Cells, LECTIN, Lectins, LYMPH, LYMPH NODE, Lymph Nodes, Mannose-Binding Lectins, metabolism, Mice, mouse, Mutant Strains, Organ Culture Techniques, pathology, Peptides, Poisons, Protein, Proteins, RESPONSES, signaling, Skin, Surface, Team-Mueller, Toxicity},
pubstate = {published},
tppubtype = {article}
}
Flacher Vincent, Tripp Christoph H, Stoitzner Patrizia, Haid Bernhard, Ebner Susanne, Frari Barbara Del, Koch Franz, Park Chae Gyu, Steinman Ralph M, Idoyaga Juliana, Romani Nikolaus
Epidermal Langerhans cells rapidly capture and present antigens from C-type lectin-targeting antibodies deposited in the dermis Journal Article
In: The Journal of Investigative Dermatology, vol. 130, no. 3, pp. 755–762, 2010, ISSN: 1523-1747.
Abstract | Links | BibTeX | Tags: Animals, Antibodies, antibody, Antigen, Antigen Presentation, ANTIGEN PRESENTING CELLS, Antigen-Presenting Cells, Antigens, BASEMENT MEMBRANE, C-Type, C-type lectin, CD103, CD8+ T cells, Cell Division, Cell Movement, Cells, Culture, Cultured, cytology, Dendritic Cells, DERMATOLOGY, DERMIS, Epidermal Cells, Epidermis, function, Human, Humans, Immunology, in situ, IN VITRO, In vivo, Inbred BALB C, Inbred C57BL, Injections, Intradermal, Langerhans Cells, LECTIN, Lectins, mAb, Mannose-Binding Lectins, Membrane, Mice, Monoclonal, mouse, murine, Pharmacology, Proliferation, Protein, Receptor, Skin, Surface, T CELLS, T-CELLS, T-Lymphocytes, Team-Mueller, Vaccination, vaccine, Vaccines
@article{flacher_epidermal_2010,
title = {Epidermal Langerhans cells rapidly capture and present antigens from C-type lectin-targeting antibodies deposited in the dermis},
author = {Vincent Flacher and Christoph H Tripp and Patrizia Stoitzner and Bernhard Haid and Susanne Ebner and Barbara Del Frari and Franz Koch and Chae Gyu Park and Ralph M Steinman and Juliana Idoyaga and Nikolaus Romani},
doi = {10.1038/jid.2009.343},
issn = {1523-1747},
year = {2010},
date = {2010-03-01},
journal = {The Journal of Investigative Dermatology},
volume = {130},
number = {3},
pages = {755--762},
abstract = {Antigen-presenting cells can capture antigens that are deposited in the skin, including vaccines given subcutaneously. These include different dendritic cells (DCs) such as epidermal Langerhans cells (LCs), dermal DCs, and dermal langerin+ DCs. To evaluate access of dermal antigens to skin DCs, we used mAb to two C-type lectin endocytic receptors, DEC-205/CD205 and langerin/CD207. When applied to murine and human skin explant cultures, these mAbs were efficiently taken up by epidermal LCs. In addition, anti-DEC-205 targeted langerin+ CD103+ and langerin- CD103- mouse dermal DCs. Unexpectedly, intradermal injection of either mAb, but not isotype control, resulted in strong and rapid labeling of LCs in situ, implying that large molecules can diffuse through the basement membrane into the epidermis. Epidermal LCs targeted in vivo by ovalbumin-coupled anti-DEC-205 potently presented antigen to CD4+ and CD8+ T cells in vitro. However, to our surprise, LCs targeted through langerin were unable to trigger T-cell proliferation. Thus, epidermal LCs have a major function in uptake of lectin-binding antibodies under standard vaccination conditions.},
keywords = {Animals, Antibodies, antibody, Antigen, Antigen Presentation, ANTIGEN PRESENTING CELLS, Antigen-Presenting Cells, Antigens, BASEMENT MEMBRANE, C-Type, C-type lectin, CD103, CD8+ T cells, Cell Division, Cell Movement, Cells, Culture, Cultured, cytology, Dendritic Cells, DERMATOLOGY, DERMIS, Epidermal Cells, Epidermis, function, Human, Humans, Immunology, in situ, IN VITRO, In vivo, Inbred BALB C, Inbred C57BL, Injections, Intradermal, Langerhans Cells, LECTIN, Lectins, mAb, Mannose-Binding Lectins, Membrane, Mice, Monoclonal, mouse, murine, Pharmacology, Proliferation, Protein, Receptor, Skin, Surface, T CELLS, T-CELLS, T-Lymphocytes, Team-Mueller, Vaccination, vaccine, Vaccines},
pubstate = {published},
tppubtype = {article}
}
Ménard-Moyon Cécilia, Kostarelos Kostas, Prato Maurizio, Bianco Alberto
Functionalized carbon nanotubes for probing and modulating molecular functions Journal Article
In: Chemistry & Biology, vol. 17, no. 2, pp. 107–115, 2010, ISSN: 1879-1301.
Abstract | Links | BibTeX | Tags: Antibodies, Antigens, Atomic Force, Biosensing Techniques, carbon, Drug Delivery Systems, enzymes, Glycoproteins, I2CT, Ion Channels, Microscopy, Nanotubes, RNA, Small Interfering, Team-Bianco
@article{menard-moyon_functionalized_2010,
title = {Functionalized carbon nanotubes for probing and modulating molecular functions},
author = {Cécilia Ménard-Moyon and Kostas Kostarelos and Maurizio Prato and Alberto Bianco},
doi = {10.1016/j.chembiol.2010.01.009},
issn = {1879-1301},
year = {2010},
date = {2010-02-01},
journal = {Chemistry & Biology},
volume = {17},
number = {2},
pages = {107--115},
abstract = {Carbon nanotubes (CNTs) entered the domain of biological research a few years ago, creating a significant amount of interest due to their extraordinary physicochemical properties. The integration of CNT-based strategies with biology necessitates a multidisciplinary approach that requires competences in the diverse fields of chemistry, physics, and life sciences. In the biomedical domain CNTs are extensively explored as novel drug delivery systems for therapy and diagnosis. Additionally, CNTs can also be designed as new tools for modulation of molecular functions, by directly affecting various biological processes or by interaction with bioactive molecules. The aim of this review is to discuss how CNTs can be exploited as new probes for molecular functions. The different sections illustrate various applications of CNTs, including gene silencing, surface cell interactions via glycoproteins, biosensing, intracellular drug delivery using an atomic force microscopy tip-based nanoinjector, modulation of antibody/antigen interaction and enzyme activity, and blocking of ion channels.},
keywords = {Antibodies, Antigens, Atomic Force, Biosensing Techniques, carbon, Drug Delivery Systems, enzymes, Glycoproteins, I2CT, Ion Channels, Microscopy, Nanotubes, RNA, Small Interfering, Team-Bianco},
pubstate = {published},
tppubtype = {article}
}
Romani Nikolaus, Thurnher Martin, Idoyaga Juliana, Steinman Ralph M, Flacher Vincent
Targeting of antigens to skin dendritic cells: possibilities to enhance vaccine efficacy Journal Article
In: Immunology and Cell Biology, vol. 88, no. 4, pp. 424–430, 2010, ISSN: 1440-1711.
Abstract | Links | BibTeX | Tags: Animals, Antibodies, antibody, Antigen, ANTIGEN PRESENTING CELLS, Antigen-Presenting Cells, Antigens, C-Type, CD, CD14, CD1a, CROSS-PRESENTATION, Dendritic Cells, DERMATOLOGY, Expression, Human, Humans, Immunity, Immunotherapy, INDUCTION, Intradermal, Langerhans Cells, Lectins, Lymphocytes, Mannose-Binding Lectins, mouse, Receptor, Skin, SUBSETS, T-Lymphocytes, Team-Mueller, tolerance, Vaccination, vaccine, Vaccines
@article{romani_targeting_2010,
title = {Targeting of antigens to skin dendritic cells: possibilities to enhance vaccine efficacy},
author = {Nikolaus Romani and Martin Thurnher and Juliana Idoyaga and Ralph M Steinman and Vincent Flacher},
doi = {10.1038/icb.2010.39},
issn = {1440-1711},
year = {2010},
date = {2010-01-01},
journal = {Immunology and Cell Biology},
volume = {88},
number = {4},
pages = {424--430},
abstract = {Vaccinations in medicine are commonly administered through the skin. Therefore, the vaccine is immunologically processed by antigen-presenting cells of the skin. There is recent evidence that the clinically less often used intradermal route is effective; in cases even superior to the conventional subcutaneous or intramuscular route. Professional antigen-presenting cells of the skin comprise epidermal Langerhans cells (CD207/langerin(+)), dermal langerin(-) and dermal langerin(+) dendritic cells (DCs). In human skin, langerin(-) dermal DCs can be further subdivided on the basis of their reciprocal CD1a and CD14 expression. The relative contributions of these subsets to the generation of immunity or tolerance are still unclear. Langerhans cells in human skin seem to be specialized for induction of cytotoxic T lymphocytes. Likewise, mouse Langerhans cells are capable of cross-presentation and of protecting against experimental tumours. It is desirable to harness these properties for immunotherapy. A promising strategy to dramatically improve the outcome of vaccinations is 'antigen targeting'. Thereby, the vaccine is delivered directly and selectively to defined types of skin DCs. Targeting is achieved by means of coupling antigen to antibodies that recognize cell surface receptors on DCs. This approach is being widely explored. Little is known, however, about the events that take place in the skin and the DCs subsets involved therein. This topic will be discussed in this article.},
keywords = {Animals, Antibodies, antibody, Antigen, ANTIGEN PRESENTING CELLS, Antigen-Presenting Cells, Antigens, C-Type, CD, CD14, CD1a, CROSS-PRESENTATION, Dendritic Cells, DERMATOLOGY, Expression, Human, Humans, Immunity, Immunotherapy, INDUCTION, Intradermal, Langerhans Cells, Lectins, Lymphocytes, Mannose-Binding Lectins, mouse, Receptor, Skin, SUBSETS, T-Lymphocytes, Team-Mueller, tolerance, Vaccination, vaccine, Vaccines},
pubstate = {published},
tppubtype = {article}
}
2009
Flacher Vincent, Sparber Florian, Tripp Christoph H, Romani Nikolaus, Stoitzner Patrizia
Targeting of epidermal Langerhans cells with antigenic proteins: attempts to harness their properties for immunotherapy Journal Article
In: Cancer immunology, immunotherapy: CII, vol. 58, no. 7, pp. 1137–1147, 2009, ISSN: 1432-0851.
Abstract | Links | BibTeX | Tags: Active, Animals, Antibodies, antibody, Antigen, Antigens, BLOOD, C-Type, cancer, CD, CD4-Positive T-Lymphocytes, CD4+ T cells, CD8-Positive T-Lymphocytes, CD8+ T cells, Dendritic Cells, DERMATOLOGY, DERMIS, Epidermis, Growth, Human, Humans, immune response, IMMUNE-RESPONSES, Immunization, Immunology, Immunotherapy, in situ, In vivo, Inbred BALB C, Inbred C57BL, INDUCTION, Langerhans Cells, LECTIN, Lectins, LYMPH, LYMPH NODE, Lymph Nodes, Major Histocompatibility Complex, Mannose-Binding Lectins, metabolism, methods, MHC class I, MHC class I molecules, Mice, Neoplasm, Neoplasms, OVALBUMIN, Patients, PROGENITORS, Protein, Proteins, RESPONSES, review, Skin, T CELLS, T-CELLS, Team-Mueller, therapy, tumor
@article{flacher_targeting_2009,
title = {Targeting of epidermal Langerhans cells with antigenic proteins: attempts to harness their properties for immunotherapy},
author = {Vincent Flacher and Florian Sparber and Christoph H Tripp and Nikolaus Romani and Patrizia Stoitzner},
doi = {10.1007/s00262-008-0563-9},
issn = {1432-0851},
year = {2009},
date = {2009-07-01},
journal = {Cancer immunology, immunotherapy: CII},
volume = {58},
number = {7},
pages = {1137--1147},
abstract = {Langerhans cells, a subset of skin dendritic cells in the epidermis, survey peripheral tissue for invading pathogens. In recent functional studies it was proven that Langerhans cells can present exogenous antigen not merely on major histocompatibility complexes (MHC)-class II molecules to CD4+ T cells, but also on MHC-class I molecules to CD8+ T cells. Immune responses against topically applied antigen could be measured in skin-draining lymph nodes. Skin barrier disruption or co-application of adjuvants was required for maximal induction of T cell responses. Cytotoxic T cells induced by topically applied antigen inhibited tumor growth in vivo, thus underlining the potential of Langerhans cells for immunotherapy. Here we review recent work and report novel observations relating to the potential use of Langerhans cells for immunotherapy. We investigated the potential of epicutaneous immunization strategies in which resident skin dendritic cells are loaded with tumor antigen in situ. This contrasts with current clinical approaches, where dendritic cells generated from progenitors in blood are loaded with tumor antigen ex vivo before injection into cancer patients. In the current study, we applied either fluorescently labeled protein antigen or targeting antibodies against DEC-205/CD205 and langerin/CD207 topically onto barrier-disrupted skin and examined antigen capture and transport by Langerhans cells. Protein antigen could be detected in Langerhans cells in situ, and they were the main skin dendritic cell subset transporting antigen during emigration from skin explants. Potent in vivo proliferative responses of CD4+ and CD8+ T cells were measured after epicutaneous immunization with low amounts of protein antigen. Targeting antibodies were mainly transported by langerin+ migratory dendritic cells of which the majority represented migratory Langerhans cells and a smaller subset the new langerin+ dermal dendritic cell population located in the upper dermis. The preferential capture of topically applied antigen by Langerhans cells and their ability to induce potent CD4+ and CD8+ T cell responses emphasizes their potential for epicutaneous immunization strategies.},
keywords = {Active, Animals, Antibodies, antibody, Antigen, Antigens, BLOOD, C-Type, cancer, CD, CD4-Positive T-Lymphocytes, CD4+ T cells, CD8-Positive T-Lymphocytes, CD8+ T cells, Dendritic Cells, DERMATOLOGY, DERMIS, Epidermis, Growth, Human, Humans, immune response, IMMUNE-RESPONSES, Immunization, Immunology, Immunotherapy, in situ, In vivo, Inbred BALB C, Inbred C57BL, INDUCTION, Langerhans Cells, LECTIN, Lectins, LYMPH, LYMPH NODE, Lymph Nodes, Major Histocompatibility Complex, Mannose-Binding Lectins, metabolism, methods, MHC class I, MHC class I molecules, Mice, Neoplasm, Neoplasms, OVALBUMIN, Patients, PROGENITORS, Protein, Proteins, RESPONSES, review, Skin, T CELLS, T-CELLS, Team-Mueller, therapy, tumor},
pubstate = {published},
tppubtype = {article}
}
2008
Parietti Véronique, Monneaux Fanny, Décossas Marion, Muller Sylviane
Function of CD4+,CD25+ Treg cells in MRL/lpr mice is compromised by intrinsic defects in antigen-presenting cells and effector Ŧ cells Journal Article
In: Arthritis and Rheumatism, vol. 58, no. 6, pp. 1751–1761, 2008, ISSN: 0004-3591.
Abstract | Links | BibTeX | Tags: Animal, Animals, Antigen-Presenting Cells, Antigens, B7-1 Antigen, B7-2 Antigen, CD, Cell Communication, Cells, Coculture Techniques, CTLA-4 Antigen, Cultured, Disease Models, Female, I2CT, Interleukin-1, Interleukin-2 Receptor alpha Subunit, Lupus Erythematosus, Mice, Monneaux, Regulatory, Systemic, T-Lymphocyte Subsets, T-Lymphocytes, Team-Dumortier
@article{parietti_function_2008,
title = {Function of CD4+,CD25+ Treg cells in MRL/lpr mice is compromised by intrinsic defects in antigen-presenting cells and effector Ŧ cells},
author = {Véronique Parietti and Fanny Monneaux and Marion Décossas and Sylviane Muller},
doi = {10.1002/art.23464},
issn = {0004-3591},
year = {2008},
date = {2008-06-01},
journal = {Arthritis and Rheumatism},
volume = {58},
number = {6},
pages = {1751--1761},
abstract = {OBJECTIVE: Naturally occurring CD4+,CD25+ Treg cells are central in the maintenance of peripheral tolerance. Impaired activity and/or a lower frequency of these cells is involved in the emergence of autoimmunity. We undertook this study to analyze relative proportions and functional alterations of Treg cells in MRL/lpr mice.
METHODS: The frequency of CD4+,CD25+ T cells in the peripheral blood of healthy and autoimmune mice was compared by flow cytometry. The capacity of CD4+,CD25+ T cells to inhibit the proliferation and cytokine secretion of CD4+,CD25- T cells was assessed after polyclonal activation.
RESULTS: MRL/lpr mice exhibited a normal percentage of CD4+,CD25 high T cells, and forkhead box P3 messenger RNA and protein expression in Treg cells was not altered. However, MRL/lpr Treg cells displayed a reduced capacity to suppress proliferation and to inhibit interferon-gamma secretion by syngeneic effector CD4+,CD25- T cells, as compared with syngeneic cocultures of CBA/J T cells. Moreover, effector MRL/lpr CD4+,CD25- T cells were substantially less susceptible to suppression even when cultured with CBA/J or MRL/lpr Treg cells. Crossover experiments led us to conclude that in MRL/lpr mice, each partner engaged in T cell regulation displays altered functions. Molecules involved in suppressive mechanisms (CTLA-4 and CD80/CD86) are underexpressed, and antigen-presenting cells (APCs) produce raised levels of interleukin-6, which is known to abrogate suppression.
CONCLUSION: Our results suggest that although the frequency and phenotype of Treg cells in MRL/lpr mice are similar to those in normal mice, Treg cells in MRL/lpr mice are not properly stimulated by APCs and are unable to suppress proinflammatory cytokine secretion from effector T cells.},
keywords = {Animal, Animals, Antigen-Presenting Cells, Antigens, B7-1 Antigen, B7-2 Antigen, CD, Cell Communication, Cells, Coculture Techniques, CTLA-4 Antigen, Cultured, Disease Models, Female, I2CT, Interleukin-1, Interleukin-2 Receptor alpha Subunit, Lupus Erythematosus, Mice, Monneaux, Regulatory, Systemic, T-Lymphocyte Subsets, T-Lymphocytes, Team-Dumortier},
pubstate = {published},
tppubtype = {article}
}
METHODS: The frequency of CD4+,CD25+ T cells in the peripheral blood of healthy and autoimmune mice was compared by flow cytometry. The capacity of CD4+,CD25+ T cells to inhibit the proliferation and cytokine secretion of CD4+,CD25- T cells was assessed after polyclonal activation.
RESULTS: MRL/lpr mice exhibited a normal percentage of CD4+,CD25 high T cells, and forkhead box P3 messenger RNA and protein expression in Treg cells was not altered. However, MRL/lpr Treg cells displayed a reduced capacity to suppress proliferation and to inhibit interferon-gamma secretion by syngeneic effector CD4+,CD25- T cells, as compared with syngeneic cocultures of CBA/J T cells. Moreover, effector MRL/lpr CD4+,CD25- T cells were substantially less susceptible to suppression even when cultured with CBA/J or MRL/lpr Treg cells. Crossover experiments led us to conclude that in MRL/lpr mice, each partner engaged in T cell regulation displays altered functions. Molecules involved in suppressive mechanisms (CTLA-4 and CD80/CD86) are underexpressed, and antigen-presenting cells (APCs) produce raised levels of interleukin-6, which is known to abrogate suppression.
CONCLUSION: Our results suggest that although the frequency and phenotype of Treg cells in MRL/lpr mice are similar to those in normal mice, Treg cells in MRL/lpr mice are not properly stimulated by APCs and are unable to suppress proinflammatory cytokine secretion from effector T cells.
Flacher Vincent, Douillard Patrice, Aït-Yahia Smina, Stoitzner Patrizia, Clair-Moninot Valérie, Romani Nikolaus, Saeland Sem
Expression of langerin/CD207 reveals dendritic cell heterogeneity between inbred mouse strains Journal Article
In: Immunology, vol. 123, no. 3, pp. 339–347, 2008, ISSN: 1365-2567.
Abstract | Links | BibTeX | Tags: Animals, Antigen, Antigens, C-Type, CD, Cell Surface, Dendritic Cells, DERMATOLOGY, Epidermis, Expression, Immunology, Immunophenotyping, Inbred Strains, inflammation, Langerhans Cells, LECTIN, Lectins, LYMPH, LYMPH NODE, Lymph Nodes, Lymphoid Tissue, Mannose-Binding Lectins, Maturation, metabolism, Mice, Minor Histocompatibility Antigens, mouse, Phenotype, Protein, Receptor, Receptors, Species Specificity, SPLEEN, SUBSETS, Surface, Team-Mueller
@article{flacher_expression_2008,
title = {Expression of langerin/CD207 reveals dendritic cell heterogeneity between inbred mouse strains},
author = {Vincent Flacher and Patrice Douillard and Smina Aït-Yahia and Patrizia Stoitzner and Valérie Clair-Moninot and Nikolaus Romani and Sem Saeland},
doi = {10.1111/j.1365-2567.2007.02785.x},
issn = {1365-2567},
year = {2008},
date = {2008-03-01},
journal = {Immunology},
volume = {123},
number = {3},
pages = {339--347},
abstract = {Langerin/CD207 is expressed by a subset of dendritic cells (DC), the epithelial Langerhans cells. However, langerin is also detected among lymphoid tissue DC. Here, we describe striking differences in langerin-expressing cells between inbred mouse strains. While langerin+ cells are observed in comparable numbers and with comparable phenotypes in the epidermis, two distinct DC subsets bear langerin in peripheral, skin-draining lymph nodes of BALB/c mice (CD11c(high) CD8alpha(high) and CD11c(low) CD8alpha(low)), whereas only the latter subset is present in C57BL/6 mice. The CD11c(high) subset is detected in mesenteric lymph nodes and spleen of BALB/c mice, but is virtually absent from C57BL/6 mice. Similar differences are observed in other mouse strains. CD11c(low) langerin+ cells represent skin-derived Langerhans cells, as demonstrated by their high expression of DEC-205/CD205, maturation markers, and recruitment to skin-draining lymph nodes upon imiquimod-induced inflammation. It will be of interest to determine the role of lymphoid tissue-resident compared to skin-derived langerin+ DC.},
keywords = {Animals, Antigen, Antigens, C-Type, CD, Cell Surface, Dendritic Cells, DERMATOLOGY, Epidermis, Expression, Immunology, Immunophenotyping, Inbred Strains, inflammation, Langerhans Cells, LECTIN, Lectins, LYMPH, LYMPH NODE, Lymph Nodes, Lymphoid Tissue, Mannose-Binding Lectins, Maturation, metabolism, Mice, Minor Histocompatibility Antigens, mouse, Phenotype, Protein, Receptor, Receptors, Species Specificity, SPLEEN, SUBSETS, Surface, Team-Mueller},
pubstate = {published},
tppubtype = {article}
}
2007
Mueller C G, Boix C, Kwan W H, Daussy C, Fournier E, Fridman W H, Molina T J
Critical role of monocytes to support normal B cell and diffuse large B cell lymphoma survival and proliferation Journal Article
In: Journal of Leukocyte Biology, vol. 82, no. 0741-5400 (Print), pp. 567–575, 2007.
Abstract | BibTeX | Tags: Activation, Antigen, Antigens, B CELL ACTIVATION, B CELLS, B-Cell, B-Cell Activation Factor Receptor, B-Lymphocytes, Biological, BLOOD, CC, CD14, CD40, Cell Division, Cell Proliferation, Cell Survival, Chemokine CCL5, chemokines, Coculture, cytology, Dendritic Cells, Differentiation, Diffuse, Enzyme-Linked Immunosorbent Assay, Flow Cytometry, Human, Humans, IL-2, Immunoenzyme Techniques, Interleukin-2, Large B-Cell, Lymph Nodes, LYMPHOMA, metabolism, monocyte, Monocytes, Myeloid Cells, pathology, Proliferation, Protein, Receptor, Reverse Transcriptase Polymerase Chain Reaction, survival, Team-Mueller, tumor, Tumor Markers
@article{mueller_critical_2007,
title = {Critical role of monocytes to support normal B cell and diffuse large B cell lymphoma survival and proliferation},
author = {C G Mueller and C Boix and W H Kwan and C Daussy and E Fournier and W H Fridman and T J Molina},
year = {2007},
date = {2007-01-01},
journal = {Journal of Leukocyte Biology},
volume = {82},
number = {0741-5400 (Print)},
pages = {567--575},
abstract = {Large B cell lymphomas can comprise numerous CD14+ cells in the tumor stroma, which raises the question of whether monocytes can support B cell survival and proliferation. We show that the coculture of monocytes with B cells from peripheral blood or from diffuse large B cell lymphoma enabled prolonged B cell survival. Under these conditions, diffuse large lymphoma B cells proliferated, and addition of B cell-activating factor of the TNF family (BAFF) and IL-2 enhanced cell division. Monocytes and dendritic cells (DC) had similar antiapoptotic activity on healthy B cells but displayed differences with respect to B cell proliferation. Monocytes and cord blood-derived CD14+ cells promoted B cell proliferation in the presence of an anti-CD40 stimulus, whereas DC supported B cell proliferation when activated through the BCR. DC and CD14+ cells were able to induce plasmocyte differentiation. When B cells were activated via the BCR or CD40, they released the leukocyte attractant CCL5, and this chemokine is one of the main chemokines expressed in diffuse large B cell lymphoma. The data support the notion that large B cell lymphoma recruit monocytes via CCL5 to support B cell survival and proliferation},
keywords = {Activation, Antigen, Antigens, B CELL ACTIVATION, B CELLS, B-Cell, B-Cell Activation Factor Receptor, B-Lymphocytes, Biological, BLOOD, CC, CD14, CD40, Cell Division, Cell Proliferation, Cell Survival, Chemokine CCL5, chemokines, Coculture, cytology, Dendritic Cells, Differentiation, Diffuse, Enzyme-Linked Immunosorbent Assay, Flow Cytometry, Human, Humans, IL-2, Immunoenzyme Techniques, Interleukin-2, Large B-Cell, Lymph Nodes, LYMPHOMA, metabolism, monocyte, Monocytes, Myeloid Cells, pathology, Proliferation, Protein, Receptor, Reverse Transcriptase Polymerase Chain Reaction, survival, Team-Mueller, tumor, Tumor Markers},
pubstate = {published},
tppubtype = {article}
}
2006
Chen Li-Ying, Wang Juinn-Chin, Hyvert Yann, Lin Hui-Ping, Perrimon Norbert, Imler Jean-Luc, Hsu Jui-Chou
Weckle is a zinc finger adaptor of the toll pathway in dorsoventral patterning of the Drosophila embryo Journal Article
In: Current biology: CB, vol. 16, no. 12, pp. 1183–1193, 2006, ISSN: 0960-9822.
Abstract | Links | BibTeX | Tags: Adaptor Proteins, Animals, Antigens, Biological, Body Patterning, Cell Membrane, Differentiation, dimerization, DNA-Binding Proteins, Embryo, Epistasis, Genetic, imler, Immunity, Immunologic, Innate, M3i, Models, Mutation, Nonmammalian, Phenotype, Phosphoproteins, Receptors, Signal Transducing, Toll-Like Receptors, Transcription Factors, Zinc Fingers
@article{chen_weckle_2006,
title = {Weckle is a zinc finger adaptor of the toll pathway in dorsoventral patterning of the Drosophila embryo},
author = {Li-Ying Chen and Juinn-Chin Wang and Yann Hyvert and Hui-Ping Lin and Norbert Perrimon and Jean-Luc Imler and Jui-Chou Hsu},
doi = {10.1016/j.cub.2006.05.050},
issn = {0960-9822},
year = {2006},
date = {2006-06-01},
journal = {Current biology: CB},
volume = {16},
number = {12},
pages = {1183--1193},
abstract = {BACKGROUND: The Drosophila Toll pathway takes part in both establishment of the embryonic dorsoventral axis and induction of the innate immune response in adults. Upon activation by the cytokine Spätzle, Toll interacts with the adaptor proteins DmMyD88 and Tube and the kinase Pelle and triggers degradation of the inhibitor Cactus, thus allowing the nuclear translocation of the transcription factor Dorsal/Dif. weckle (wek) was previously identified as a new dorsal group gene that encodes a putative zinc finger transcription factor. However, its role in the Toll pathway was unknown. RESULTS: Here, we isolated new wek alleles and demonstrated that cactus is epistatic to wek, which in turn is epistatic to Toll. Consistent with this, Wek localizes to the plasma membrane of embryos, independently of Toll signaling. Wek homodimerizes and associates with Toll. Moreover, Wek binds to and localizes DmMyD88 to the plasma membrane. Thus, Wek acts as an adaptor to assemble/stabilize a Toll/Wek/DmMyD88/Tube complex. Remarkably, unlike the DmMyD88/tube/pelle/cactus gene cassette of the Toll pathway, wek plays a minimal role, if any, in the immune defense against Gram-positive bacteria and fungi. CONCLUSIONS: We conclude that Wek is an adaptor to link Toll and DmMyD88 and is required for efficient recruitment of DmMyD88 to Toll. Unexpectedly, wek is dispensable for innate immune response, thus revealing differences in the Toll-mediated activation of Dorsal in the embryo and Dif in the fat body of adult flies.},
keywords = {Adaptor Proteins, Animals, Antigens, Biological, Body Patterning, Cell Membrane, Differentiation, dimerization, DNA-Binding Proteins, Embryo, Epistasis, Genetic, imler, Immunity, Immunologic, Innate, M3i, Models, Mutation, Nonmammalian, Phenotype, Phosphoproteins, Receptors, Signal Transducing, Toll-Like Receptors, Transcription Factors, Zinc Fingers},
pubstate = {published},
tppubtype = {article}
}
Marmey B, Boix C, Barbaroux J B, Dieu-Nosjean M C, Diebold J, Audouin J, Fridman W H, Mueller C G, Molina T J
CD14 and CD169 expression in human lymph nodes and spleen: specific expansion of CD14+C Journal Article
In: Hum.Pathol., vol. 37, no. 0046-8177 (Print), pp. 68–77, 2006.
Abstract | BibTeX | Tags: Adhesion, Antigen, Antigens, B-Cell, Biological, CD14, Cell Differentiation, CELL SEPARATION, Dendritic Cells, Differentiation, Diffuse, Direct, Expression, Flow Cytometry, Fluorescent Antibody Technique, Gene, GLYCOPROTEIN, Glycoproteins, granulocyte/macrophage-colony, Human, Humans, Immunoenzyme Techniques, Immunohistochemistry, Immunologic, Large B-Cell, leukemia, LYMPH, LYMPH NODE, Lymph Nodes, Lymphadenitis, Lymphoid Tissue, LYMPHOMA, Macrophage, Macrophages, Membrane, Membrane Glycoproteins, metabolism, Monocytes, pathology, Phagocytosis, Receptor, Receptors, SIALOADHESIN, SPLEEN, Team-Mueller, tumor, Tumor Markers
@article{marmey_cd14_2006,
title = {CD14 and CD169 expression in human lymph nodes and spleen: specific expansion of CD14+C},
author = {B Marmey and C Boix and J B Barbaroux and M C Dieu-Nosjean and J Diebold and J Audouin and W H Fridman and C G Mueller and T J Molina},
year = {2006},
date = {2006-01-01},
journal = {Hum.Pathol.},
volume = {37},
number = {0046-8177 (Print)},
pages = {68--77},
abstract = {The mononuclear phagocyte system of human lymphoid tissue comprises macrophages and dendritic cells (DCs). The heterogeneity of the non-DC mononuclear phagocyte population in human lymphoid tissue has been little addressed. Here, we studied the expression of 2 monocyte-derived markers, CD14 and CD169 (sialoadhesin), in reactive human lymphoid tissue as well as in a series of 51 B-cell lymphomas by immunohistochemistry on paraffin-embedded tissue. We confirmed that lymph node sinusoidal monocyte-derived cells were the only population staining for CD169. Although most sinusoidal histiocytes also expressed CD14, monocyte-derived cells with phagocytosis such as erythrophagocytosis, anthracosis, or tingible bodies macrophage lacked CD14 and CD169. Among B-cell lymphomas, splenic marginal zone lymphoma was the only one associated with an expansion of the CD14(+)CD169(+) cells in the cords. With respect to nodal B-cell lymphomas, CD14(+) cells were rare among B-chronic lymphocytic leukemia, follicular lymphoma (FL), mantle cell lymphoma (MCL). However, strikingly, we found a strong expansion of CD14(+)CD169(-) cells in numerous diffuse large B-cell lymphomas (DLBCLs), except in cases associated with numerous mitoses, apoptotic bodies, and tingible bodies macrophages. When cultivated in granulocyte/macrophage colony stimulating factor/interleukin 4, DLBCL purified CD14(+) cells differentiate into plasmacytoid cells, expressing DC-specific intercellular adhesion molecule 3-grabbing nonintegrin, suggesting dendritic cell differentiation potential. Our observation fits well with the lymph node and host response cluster signatures described in the gene profiling signatures of DLBCL. However, the role of this CD14(+) population that may constitute a microenvironment-related marker of this subgroup of DLBCL remains to be determined},
keywords = {Adhesion, Antigen, Antigens, B-Cell, Biological, CD14, Cell Differentiation, CELL SEPARATION, Dendritic Cells, Differentiation, Diffuse, Direct, Expression, Flow Cytometry, Fluorescent Antibody Technique, Gene, GLYCOPROTEIN, Glycoproteins, granulocyte/macrophage-colony, Human, Humans, Immunoenzyme Techniques, Immunohistochemistry, Immunologic, Large B-Cell, leukemia, LYMPH, LYMPH NODE, Lymph Nodes, Lymphadenitis, Lymphoid Tissue, LYMPHOMA, Macrophage, Macrophages, Membrane, Membrane Glycoproteins, metabolism, Monocytes, pathology, Phagocytosis, Receptor, Receptors, SIALOADHESIN, SPLEEN, Team-Mueller, tumor, Tumor Markers},
pubstate = {published},
tppubtype = {article}
}
Barbaroux Jean-Baptiste, Kwan Wing-Hong, Allam Jean-Pierre, Novak Natalija, Bieber Thomas, Fridman Wolf H, Groves Richard, Mueller Chris G
Tumor necrosis factor-alpha- and IL-4-independent development of Langerhans cell-like dendritic cells from M-CSF-conditioned precursors Journal Article
In: The Journal of Investigative Dermatology, vol. 126, no. 1, pp. 114–120, 2006, ISSN: 0022-202X.
Abstract | Links | BibTeX | Tags: Antigens, C-Type, Carrier Proteins, CC, CCR6, CD, CD1, CD34, Cell Differentiation, Chemokine, Chemokine CCL20, chemokines, Cytokines, DERMIS, FRANZ, Granulocyte-Macrophage Colony-Stimulating Factor, Hematopoietic Stem Cells, Humans, IL-4, Interleukin-4, Langerhans Cells, Lectins, Lipopolysaccharide Receptors, M-CSF, Macrophage Colony-Stimulating Factor, Macrophage Inflammatory Proteins, Mannose-Binding Lectins, Membrane Glycoproteins, murine, RANK ligand, Receptor Activator of Nuclear Factor-kappa B, Receptors, Surface, Team-Mueller, TNF ALPHA, Tumor Necrosis Factor-alpha
@article{barbaroux_tumor_2006,
title = {Tumor necrosis factor-alpha- and IL-4-independent development of Langerhans cell-like dendritic cells from M-CSF-conditioned precursors},
author = {Jean-Baptiste Barbaroux and Wing-Hong Kwan and Jean-Pierre Allam and Natalija Novak and Thomas Bieber and Wolf H Fridman and Richard Groves and Chris G Mueller},
doi = {10.1038/sj.jid.5700023},
issn = {0022-202X},
year = {2006},
date = {2006-01-01},
journal = {The Journal of Investigative Dermatology},
volume = {126},
number = {1},
pages = {114--120},
abstract = {GM-CSF and transforming growth factor beta (TGFbeta ) are required for the generation of Langerhans cells (LC), members of the dendritic cell (DC) family. Tumor necrosis factor alpha (TNFalpha) and IL-4 can enhance LC differentiation from human monocytes or CD34(+) progenitors. Here, we show that M-CSF-cultured DC precursors derived from CD34(+) progenitors resemble dermal CD14(+) cells and readily convert to LC-like DC in GM-CSF/TGFbeta. The cells express Langerin, CD1a, and CCR6, migrate in response to CCR6 ligand CCL20, and contain Birbeck granules. TNFalpha and IL-4, added separately or together, have an inhibitory effect on LC differentiation. Cells differentiated in the presence of IL-4 and TNFalpha express low levels of CCR7. This suggests that M-CSF-conditioned DC precursors retain the capacity to efficiently undergo a differentiation program, giving rise to LC-like DC solely through the effect of GM-CSF and TGFbeta.},
keywords = {Antigens, C-Type, Carrier Proteins, CC, CCR6, CD, CD1, CD34, Cell Differentiation, Chemokine, Chemokine CCL20, chemokines, Cytokines, DERMIS, FRANZ, Granulocyte-Macrophage Colony-Stimulating Factor, Hematopoietic Stem Cells, Humans, IL-4, Interleukin-4, Langerhans Cells, Lectins, Lipopolysaccharide Receptors, M-CSF, Macrophage Colony-Stimulating Factor, Macrophage Inflammatory Proteins, Mannose-Binding Lectins, Membrane Glycoproteins, murine, RANK ligand, Receptor Activator of Nuclear Factor-kappa B, Receptors, Surface, Team-Mueller, TNF ALPHA, Tumor Necrosis Factor-alpha},
pubstate = {published},
tppubtype = {article}
}
2005
Berthier-Vergnes Odile, Bermond Fabienne, Flacher Vincent, Massacrier Catherine, Schmitt Daniel, Péguet-Navarro Josette
TNF-alpha enhances phenotypic and functional maturation of human epidermal Langerhans cells and induces IL-12 p40 and IP-10/CXCL-10 production Journal Article
In: FEBS letters, vol. 579, no. 17, pp. 3660–3668, 2005, ISSN: 0014-5793.
Abstract | Links | BibTeX | Tags: Antigens, Apoptosis, C-Type, CD, Cell Differentiation, Cells, Chemokine CXCL10, chemokines, Cultured, CXC, Epidermal Cells, HLA-DR Antigens, Humans, Hypersensitivity, Interleukin-12, Interleukin-12 Subunit p40, Langerhans Cells, Lectins, Mannose-Binding Lectins, Phenotype, Protein Subunits, Surface, T-Lymphocytes, Team-Mueller, Tumor Necrosis Factor-alpha
@article{berthier-vergnes_tnf-alpha_2005,
title = {TNF-alpha enhances phenotypic and functional maturation of human epidermal Langerhans cells and induces IL-12 p40 and IP-10/CXCL-10 production},
author = {Odile Berthier-Vergnes and Fabienne Bermond and Vincent Flacher and Catherine Massacrier and Daniel Schmitt and Josette Péguet-Navarro},
doi = {10.1016/j.febslet.2005.04.087},
issn = {0014-5793},
year = {2005},
date = {2005-07-01},
journal = {FEBS letters},
volume = {579},
number = {17},
pages = {3660--3668},
abstract = {Dendritic cells (DC) play a central role in immunity/tolerance decision, depending on their activation/maturation state. TNF-alpha is largely produced in the skin under inflammatory conditions. However, it still remains to be defined how TNF-alpha modulates the activation status of human LC, the most specialized DC controlling skin immunity. Here, we reported that fresh immature LC, highly purified from healthy human skin and exposed for two days to TNF-alpha under serum-free conditions, expressed up-regulated level of co-stimulatory molecules (CD40, CD54, CD86), maturation markers (CD83, DC-LAMP), CCR7 lymph node homing receptor, and down-regulated Langerin level, in a dose-dependent manner. This mature phenotype is closely associated with enhanced LC allostimulatory capacity. Furthermore, TNF-alpha significantly increased the number of viable LC and decreased their spontaneous apoptosis. More importantly, TNF-alpha induced LC to produce both IFN-gamma-inducible-protein IP-10/CXCL10, a Th1-attracting chemokine and IL-12 p40. Bioactive IL-12 p70 was never detected, even after additional CD40 stimulus. The results implicate LC as an effective target through which TNF-alpha may up- or down-regulate the inflammatory skin reactions.},
keywords = {Antigens, Apoptosis, C-Type, CD, Cell Differentiation, Cells, Chemokine CXCL10, chemokines, Cultured, CXC, Epidermal Cells, HLA-DR Antigens, Humans, Hypersensitivity, Interleukin-12, Interleukin-12 Subunit p40, Langerhans Cells, Lectins, Mannose-Binding Lectins, Phenotype, Protein Subunits, Surface, T-Lymphocytes, Team-Mueller, Tumor Necrosis Factor-alpha},
pubstate = {published},
tppubtype = {article}
}
Bianco Alberto, Kostarelos Kostas, Partidos Charalambos D, Prato Maurizio
Biomedical applications of functionalised carbon nanotubes Journal Article
In: Chemical Communications (Cambridge, England), no. 5, pp. 571–577, 2005, ISSN: 1359-7345.
Abstract | Links | BibTeX | Tags: Antigens, carbon, Chemical, Drug Delivery Systems, Gene Transfer Techniques, Humans, I2CT, Models, Molecular Structure, nanotechnology, Nanotubes, Team-Bianco, Vaccines
@article{bianco_biomedical_2005,
title = {Biomedical applications of functionalised carbon nanotubes},
author = {Alberto Bianco and Kostas Kostarelos and Charalambos D Partidos and Maurizio Prato},
doi = {10.1039/b410943k},
issn = {1359-7345},
year = {2005},
date = {2005-01-01},
journal = {Chemical Communications (Cambridge, England)},
number = {5},
pages = {571--577},
abstract = {The organic functionalisation of carbon nanotubes can improve substantially their solubility and biocompatibility profile; as a consequence, their manipulation and integration into biological systems has become possible so that functionalised carbon nanotubes hold currently strong promise as novel systems for the delivery of drugs, antigens and genes.},
keywords = {Antigens, carbon, Chemical, Drug Delivery Systems, Gene Transfer Techniques, Humans, I2CT, Models, Molecular Structure, nanotechnology, Nanotubes, Team-Bianco, Vaccines},
pubstate = {published},
tppubtype = {article}
}
2004
van Mierlo Geertje J D, Boonman Zita F H M, Dumortier Hélène M H, den Boer Annemieke Th, Fransen Marieke F, Nouta Jan, van der Voort Ellen I H, Offringa Rienk, Toes René E M, Melief Cornelis J M
Activation of dendritic cells that cross-present tumor-derived antigen licenses CD8+ CTL to cause tumor eradication Journal Article
In: Journal of Immunology (Baltimore, Md.: 1950), vol. 173, no. 11, pp. 6753–6759, 2004, ISSN: 0022-1767.
Abstract | Links | BibTeX | Tags: Adenovirus E1A Proteins, Animals, Antibodies, Antigen-Presenting Cells, Antigens, CD11c Antigen, CD40 Antigens, Cross-Priming, Cultured, Cytotoxic, Cytotoxicity, Dendritic Cells, Dumortier, Epitopes, Experimental, I2CT, Immunologic, Inbred C57BL, Injections, Intralesional, Intravenous, Knockout, Male, Mice, Monoclonal, Neoplasms, T-Lymphocyte, T-Lymphocytes, Team-Dumortier, transgenic, tumor, Tumor Cells, Viral
@article{van_mierlo_activation_2004,
title = {Activation of dendritic cells that cross-present tumor-derived antigen licenses CD8+ CTL to cause tumor eradication},
author = {Geertje J D van Mierlo and Zita F H M Boonman and Hélène M H Dumortier and Annemieke Th den Boer and Marieke F Fransen and Jan Nouta and Ellen I H van der Voort and Rienk Offringa and René E M Toes and Cornelis J M Melief},
doi = {10.4049/jimmunol.173.11.6753},
issn = {0022-1767},
year = {2004},
date = {2004-12-01},
journal = {Journal of Immunology (Baltimore, Md.: 1950)},
volume = {173},
number = {11},
pages = {6753--6759},
abstract = {The fate of naive CD8(+) T cells is determined by the environment in which they encounter MHC class I presented peptide Ags. The manner in which tumor Ags are presented is a longstanding matter of debate. Ag presentation might be mediated by tumor cells in t