Publications
2020
Mueller Christopher G, Camara Abdouramane, Flacher Vincent
[The sinusoidal microenvironment regulates the niche and the differentiation of lymph node macrophages] Journal Article
In: Medecine Sciences: M/S, vol. 36, no. 10, pp. 835–838, 2020, ISSN: 1958-5381.
Links | BibTeX | Tags: Animals, Capillaries, Cell Differentiation, Cellular, Humans, Immunity, Lymph Nodes, Lymphatic Vessels, Macrophages, Stem Cell Niche, Team-Mueller
@article{mueller_sinusoidal_2020,
title = {[The sinusoidal microenvironment regulates the niche and the differentiation of lymph node macrophages]},
author = {Christopher G Mueller and Abdouramane Camara and Vincent Flacher},
doi = {10.1051/medsci/2020148},
issn = {1958-5381},
year = {2020},
date = {2020-01-01},
journal = {Medecine Sciences: M/S},
volume = {36},
number = {10},
pages = {835--838},
keywords = {Animals, Capillaries, Cell Differentiation, Cellular, Humans, Immunity, Lymph Nodes, Lymphatic Vessels, Macrophages, Stem Cell Niche, Team-Mueller},
pubstate = {published},
tppubtype = {article}
}
2018
Mueller Christopher George, Nayar Saba, Gardner David, Barone Francesca
Cellular and Vascular Components of Tertiary Lymphoid Structures Journal Article
In: Methods in Molecular Biology (Clifton, N.J.), vol. 1845, pp. 17–30, 2018, ISSN: 1940-6029.
Abstract | Links | BibTeX | Tags: Animals, Biomarkers, CCL21, Cell Survival, Cellular Microenvironment, CXCL13, Cytokines, Humans, Immunity, inflammation, Innate, LYMPHATIC VESSEL, Lymphocyte, Lymphocyte Subsets, Lymphotoxin, Multigene Family, Neovascularization, Pathologic, Receptors, Signal Transduction, Sjögren’s syndrome, Stromal cell, Team-Mueller, Tertiary lymphoid organ, Tertiary lymphoid structures, TNF-α, Tumor Necrosis Factor
@article{mueller_cellular_2018,
title = {Cellular and Vascular Components of Tertiary Lymphoid Structures},
author = {Christopher George Mueller and Saba Nayar and David Gardner and Francesca Barone},
doi = {10.1007/978-1-4939-8709-2_2},
issn = {1940-6029},
year = {2018},
date = {2018-01-01},
journal = {Methods in Molecular Biology (Clifton, N.J.)},
volume = {1845},
pages = {17--30},
abstract = {Inflammatory immune cells recruited at the site of chronic inflammation form structures that resemble secondary lymphoid organs (SLO). These are characterized by segregated areas of prevalent T- or B-cell aggregation, differentiation of high endothelial venules, and local activation of resident stromal cells, including lymphatic endothelial cells. B-cell proliferation and affinity maturation toward locally displayed autoantigens have been demonstrated at these sites, known as tertiary lymphoid structures (TLS). TLS formation during chronic inflammation has been associated with local disease persistence and progression, as well as increased systemic manifestations. While bearing a similar histological structure to SLO, the signals that regulate TLS and SLO formation can diverge and a series of pro-inflammatory cytokines have been ascribed as responsible for TLS formation at different anatomical sites. Moreover, for a long time the structural compartment that regulates TLS homeostasis, including survival and recirculation of leucocytes has been neglected. In this chapter, we summarize the novel data available on TLS formation, structural organization, and the functional and anatomical links connecting TLS and SLOs.},
keywords = {Animals, Biomarkers, CCL21, Cell Survival, Cellular Microenvironment, CXCL13, Cytokines, Humans, Immunity, inflammation, Innate, LYMPHATIC VESSEL, Lymphocyte, Lymphocyte Subsets, Lymphotoxin, Multigene Family, Neovascularization, Pathologic, Receptors, Signal Transduction, Sjögren’s syndrome, Stromal cell, Team-Mueller, Tertiary lymphoid organ, Tertiary lymphoid structures, TNF-α, Tumor Necrosis Factor},
pubstate = {published},
tppubtype = {article}
}
2016
Paro Simona, Imler Jean-Luc
Encyclopedia of Immunobiology Book Chapter
In: Ratcliffe, M (Ed.): vol. 1, Chapter “Immunity in insects”, pp. 454-461, Elsevier, 2016.
BibTeX | Tags: imler, Immunity, Insect, M3i
@inbook{Paro0000,
title = {Encyclopedia of Immunobiology},
author = {Simona Paro and Jean-Luc Imler},
editor = {M Ratcliffe},
year = {2016},
date = {2016-08-01},
volume = {1},
pages = {454-461},
publisher = {Elsevier},
chapter = {“Immunity in insects”},
keywords = {imler, Immunity, Insect, M3i},
pubstate = {published},
tppubtype = {inbook}
}
2015
Mairhofer David G, Ortner Daniela, Tripp Christoph H, Schaffenrath Sandra, Fleming Viktor, Heger Lukas, Komenda Kerstin, Reider Daniela, Dudziak Diana, Chen Suzie, Becker Jürgen C, Flacher Vincent, Stoitzner Patrizia
Impaired gp100-Specific CD8(+) Ŧ-Cell Responses in the Presence of Myeloid-Derived Suppressor Cells in a Spontaneous Mouse Melanoma Model Journal Article
In: The Journal of Investigative Dermatology, vol. 135, no. 11, pp. 2785–2793, 2015, ISSN: 1523-1747.
Abstract | Links | BibTeX | Tags: Analysis of Variance, Animal, Animals, Antigen, cancer, CARCINOGENESIS, CD8-Positive T-Lymphocytes, Cell Proliferation, Cultured, DERMATOLOGY, development, disease, Disease Models, Experimental, GLYCOPROTEIN, gp100 Melanoma Antigen, Growth, Human, Humans, Immunity, Immunologic, IN VITRO, Inbred C57BL, iNOS, Leukocytes, LYMPH, LYMPH NODE, Lymph Nodes, Lymphocyte Activation, MELANOCYTES, Melanoma, Mice, mouse, murine, NITRIC OXIDE, nitric oxide synthase, Phenotype, Proliferation, Random Allocation, Receptor, Regulatory, RESPONSES, Skin, SUBSETS, Suppressor Factors, T CELLS, T-CELLS, T-Lymphocytes, Team-Mueller, Transforming Growth Factor beta, transgenic, tumor, Tumor Cells, tumor immunity
@article{mairhofer_impaired_2015,
title = {Impaired gp100-Specific CD8(+) Ŧ-Cell Responses in the Presence of Myeloid-Derived Suppressor Cells in a Spontaneous Mouse Melanoma Model},
author = {David G Mairhofer and Daniela Ortner and Christoph H Tripp and Sandra Schaffenrath and Viktor Fleming and Lukas Heger and Kerstin Komenda and Daniela Reider and Diana Dudziak and Suzie Chen and Jürgen C Becker and Vincent Flacher and Patrizia Stoitzner},
doi = {10.1038/jid.2015.241},
issn = {1523-1747},
year = {2015},
date = {2015-11-01},
journal = {The Journal of Investigative Dermatology},
volume = {135},
number = {11},
pages = {2785--2793},
abstract = {Murine tumor models that closely reflect human diseases are important tools to investigate carcinogenesis and tumor immunity. The transgenic (tg) mouse strain tg(Grm1)EPv develops spontaneous melanoma due to ectopic overexpression of the metabotropic glutamate receptor 1 (Grm1) in melanocytes. In the present study, we characterized the immune status and functional properties of immune cells in tumor-bearing mice. Melanoma development was accompanied by a reduction in the percentages of CD4(+) T cells including regulatory T cells (Tregs) in CD45(+) leukocytes present in tumor tissue and draining lymph nodes (LNs). In contrast, the percentages of CD8(+) T cells were unchanged, and these cells showed an activated phenotype in tumor mice. Endogenous melanoma-associated antigen glycoprotein 100 (gp100)-specific CD8(+) T cells were not deleted during tumor development, as revealed by pentamer staining in the skin and draining LNs. They, however, were unresponsive to ex vivo gp100-peptide stimulation in late-stage tumor mice. Interestingly, immunosuppressive myeloid-derived suppressor cells (MDSCs) were recruited to tumor tissue with a preferential accumulation of granulocytic MDSC (grMDSCs) over monocytic MDSC (moMDSCs). Both subsets produced Arginase-1, inducible nitric oxide synthase (iNOS), and transforming growth factor-β and suppressed T-cell proliferation in vitro. In this work, we describe the immune status of a spontaneous melanoma mouse model that provides an interesting tool to develop future immunotherapeutical strategies.},
keywords = {Analysis of Variance, Animal, Animals, Antigen, cancer, CARCINOGENESIS, CD8-Positive T-Lymphocytes, Cell Proliferation, Cultured, DERMATOLOGY, development, disease, Disease Models, Experimental, GLYCOPROTEIN, gp100 Melanoma Antigen, Growth, Human, Humans, Immunity, Immunologic, IN VITRO, Inbred C57BL, iNOS, Leukocytes, LYMPH, LYMPH NODE, Lymph Nodes, Lymphocyte Activation, MELANOCYTES, Melanoma, Mice, mouse, murine, NITRIC OXIDE, nitric oxide synthase, Phenotype, Proliferation, Random Allocation, Receptor, Regulatory, RESPONSES, Skin, SUBSETS, Suppressor Factors, T CELLS, T-CELLS, T-Lymphocytes, Team-Mueller, Transforming Growth Factor beta, transgenic, tumor, Tumor Cells, tumor immunity},
pubstate = {published},
tppubtype = {article}
}
Veillard Florian, Troxler Laurent, Reichhart Jean-Marc
Drosophila melanogaster clip-domain serine proteases: Structure, function and regulation Journal Article
In: Biochimie, vol. 122, pp. 255-269, 2015, ISBN: 0300-9084.
Abstract | Links | BibTeX | Tags: bioinformatic, Chymotrypsin, clip domain, Immunity, Insect, M3i, Melanization, reichhart, Serine Proteases, Serpin, Toll
@article{veillard_drosophila_2015,
title = {Drosophila melanogaster clip-domain serine proteases: Structure, function and regulation},
author = {Florian Veillard and Laurent Troxler and Jean-Marc Reichhart},
url = {http://www.sciencedirect.com/science/article/pii/S030090841500317X},
doi = {10.1016/j.biochi.2015.10.007},
isbn = {0300-9084},
year = {2015},
date = {2015-10-08},
journal = {Biochimie},
volume = {122},
pages = {255-269},
abstract = {Mammalian chymotrypsin-like serine proteases (SPs) are one of the best-studied family of enzymes with roles in a wide range of physiological processes, including digestion, blood coagulation, fibrinolysis and humoral immunity. Extracellular SPs can form cascades, in which one protease activates the zymogen of the next protease in the chain, to amplify physiological or pathological signals. These extracellular SPs are generally multi-domain proteins, with pro-domains that are involved in protein–protein interactions critical for the sequential organization of the cascades, the control of their intensity and their proper localization. Far less is known about invertebrate SPs than their mammalian counterparts. In insect genomes, SPs and their proteolytically inactive homologs (SPHs) constitute large protein families. In addition to the chymotrypsin fold, many of these proteins contain additional structural domains, often with conserved mammalian orthologues. However, the largest group of arthropod SP regulatory modules is the clip domains family, which has only been identified in arthropods. The clip-domain SPs are extracellular and have roles in the immune response and embryonic development. The powerful reverse-genetics tools in Drosophila melanogaster have been essential to identify the functions of clip-SPs and their organization in sequential cascades. This review focuses on the current knowledge of Drosophila clip-SPs and presents, when necessary, data obtained in other insect models. We will first cover the biochemical and structural features of clip domain SPs and SPHs. Clip-SPs are implicated in three main biological processes: the control of the dorso-ventral patterning during embryonic development; the activation of the Toll-mediated response to microbial infections and the prophenoloxydase cascade, which triggers melanization. Finally, we review the regulation of SPs and SPHs, from specificity of activation to inhibition by endogenous or pathogen-encoded inhibitors.},
keywords = {bioinformatic, Chymotrypsin, clip domain, Immunity, Insect, M3i, Melanization, reichhart, Serine Proteases, Serpin, Toll},
pubstate = {published},
tppubtype = {article}
}
Majzoub Karim, Imler Jean-Luc
Encyclopedia of Molecular Cell Biology and Molecular Medicine Book Chapter
In: Verlag, Wiley-VCH (Ed.): vol. 1, Chapter « RNAi to treat virus infections », pp. 192-228, GmbH & Co. KGaA, 2015.
Abstract | Links | BibTeX | Tags: antiviral, Argonaute, Delivery, imler, Immunity, lipofection, M3i, microRNA (miRNA), RNA Virus Infections, RNAi, small hairpin RNA (shRNA), small interfering RNA (siRNA)
@inbook{Majzoub2015,
title = {Encyclopedia of Molecular Cell Biology and Molecular Medicine},
author = {Karim Majzoub and Jean-Luc Imler},
editor = {Wiley-VCH Verlag},
doi = {10.1002/3527600906.mcb.201500003},
year = {2015},
date = {2015-04-28},
volume = {1},
pages = {192-228},
publisher = {GmbH & Co. KGaA},
chapter = {« RNAi to treat virus infections »},
abstract = {In spite of its young age, the field of RNA interference has already yielded major advances in the laboratory. This sequence-specific mechanism of gene regulation also holds strong promise for the development of a new generation of drugs, in particular to control the everlasting threat of viral infections. Here, the mechanisms and pathways of RNA interference are reviewed, with emphasis placed on how RNA silencing forms a potent antiviral immune mechanism in plants and invertebrates. The approaches developed to use RNA interference to control viral infections in mammals are then described. Finally, the problems encountered while translating this revolutionary technology into the clinic are presented, and the advances currently developed to overcome these limitations are discussed.},
keywords = {antiviral, Argonaute, Delivery, imler, Immunity, lipofection, M3i, microRNA (miRNA), RNA Virus Infections, RNAi, small hairpin RNA (shRNA), small interfering RNA (siRNA)},
pubstate = {published},
tppubtype = {inbook}
}
2014
Bonnay François, Nguyen Xuan-Hung, Cohen-Berros Eva, Troxler Laurent, Batsche Eric, Camonis Jacques, Takeuchi Osamu, Reichhart Jean-Marc, Matt Nicolas
Akirin specifies NF-κB selectivity of Drosophila innate immune response via chromatin remodeling Journal Article
In: EMBO J., vol. 33, no. 20, pp. 2349–2362, 2014, ISSN: 1460-2075.
Abstract | Links | BibTeX | Tags: Animals, bioinformatic, Cell Cycle Proteins, Chromatin Assembly and Disassembly, chromatin remodeling, DNA-Binding Proteins, Female, Genetic, Immunity, Innate, Innate immune response, M3i, Male, matt, Mutation, NF-kappa B, NF‐κB, Promoter Regions, proteomics, reichhart, Trans-Activators, Transcription Factors, Transcriptional Activation, Two-Hybrid System Techniques
@article{bonnay_akirin_2014,
title = {Akirin specifies NF-κB selectivity of Drosophila innate immune response via chromatin remodeling},
author = {François Bonnay and Xuan-Hung Nguyen and Eva Cohen-Berros and Laurent Troxler and Eric Batsche and Jacques Camonis and Osamu Takeuchi and Jean-Marc Reichhart and Nicolas Matt},
doi = {10.15252/embj.201488456},
issn = {1460-2075},
year = {2014},
date = {2014-10-01},
journal = {EMBO J.},
volume = {33},
number = {20},
pages = {2349--2362},
abstract = {The network of NF-κB-dependent transcription that activates both pro- and anti-inflammatory genes in mammals is still unclear. As NF-κB factors are evolutionarily conserved, we used Drosophila to understand this network. The NF-κB transcription factor Relish activates effector gene expression following Gram-negative bacterial immune challenge. Here, we show, using a genome-wide approach, that the conserved nuclear protein Akirin is a NF-κB co-factor required for the activation of a subset of Relish-dependent genes correlating with the presence of H3K4ac epigenetic marks. A large-scale unbiased proteomic analysis revealed that Akirin orchestrates NF-κB transcriptional selectivity through the recruitment of the Osa-containing-SWI/SNF-like Brahma complex (BAP). Immune challenge in Drosophila shows that Akirin is required for the transcription of a subset of effector genes, but dispensable for the transcription of genes that are negative regulators of the innate immune response. Therefore, Akirins act as molecular selectors specifying the choice between subsets of NF-κB target genes. The discovery of this mechanism, conserved in mammals, paves the way for the establishment of more specific and less toxic anti-inflammatory drugs targeting pro-inflammatory genes.},
keywords = {Animals, bioinformatic, Cell Cycle Proteins, Chromatin Assembly and Disassembly, chromatin remodeling, DNA-Binding Proteins, Female, Genetic, Immunity, Innate, Innate immune response, M3i, Male, matt, Mutation, NF-kappa B, NF‐κB, Promoter Regions, proteomics, reichhart, Trans-Activators, Transcription Factors, Transcriptional Activation, Two-Hybrid System Techniques},
pubstate = {published},
tppubtype = {article}
}
Tartey Sarang, Matsushita Kazufumi, Vandenbon Alexis, Ori Daisuke, Imamura Tomoko, Mino Takashi, Standley Daron M, Hoffmann Jules A, Reichhart Jean-Marc, Akira Shizuo, Takeuchi Osamu
Akirin2 is critical for inducing inflammatory genes by bridging IκB-ζ and the SWI/SNF complex Journal Article
In: EMBO J., vol. 33, no. 20, pp. 2332–2348, 2014, ISSN: 1460-2075.
Abstract | Links | BibTeX | Tags: Adaptor Proteins, Animals, Cell Nucleus, Chromatin Assembly and Disassembly, chromatin remodeling, Chromosomal Proteins, cytokine, Cytokines, Female, Gene Expression Regulation, gene regulation, Genetic, hoffmann, Humans, Immunity, Innate, innate immunity, Knockout, Listeria monocytogenes, M3i, Macrophages, Male, Mice, Multiprotein Complexes, Non-Histone, Nuclear Proteins, Promoter Regions, Protein Binding, reichhart, Repressor Proteins, Sequence Deletion, Signal Transducing, Transcriptional Activation
@article{tartey_akirin2_2014,
title = {Akirin2 is critical for inducing inflammatory genes by bridging IκB-ζ and the SWI/SNF complex},
author = {Sarang Tartey and Kazufumi Matsushita and Alexis Vandenbon and Daisuke Ori and Tomoko Imamura and Takashi Mino and Daron M Standley and Jules A Hoffmann and Jean-Marc Reichhart and Shizuo Akira and Osamu Takeuchi},
doi = {10.15252/embj.201488447},
issn = {1460-2075},
year = {2014},
date = {2014-10-01},
journal = {EMBO J.},
volume = {33},
number = {20},
pages = {2332--2348},
abstract = {Transcription of inflammatory genes in innate immune cells is coordinately regulated by transcription factors, including NF-κB, and chromatin modifiers. However, it remains unclear how microbial sensing initiates chromatin remodeling. Here, we show that Akirin2, an evolutionarily conserved nuclear protein, bridges NF-κB and the chromatin remodeling SWI/SNF complex by interacting with BRG1-Associated Factor 60 (BAF60) proteins as well as IκB-ζ, which forms a complex with the NF-κB p50 subunit. These interactions are essential for Toll-like receptor-, RIG-I-, and Listeria-mediated expression of proinflammatory genes including Il6 and Il12b in macrophages. Consistently, effective clearance of Listeria infection required Akirin2. Furthermore, Akirin2 and IκB-ζ recruitment to the Il6 promoter depend upon the presence of IκB-ζ and Akirin2, respectively, for regulation of chromatin remodeling. BAF60 proteins were also essential for the induction of Il6 in response to LPS stimulation. Collectively, the IκB-ζ-Akirin2-BAF60 complex physically links the NF-κB and SWI/SNF complexes in innate immune cell activation. By recruiting SWI/SNF chromatin remodellers to IκB-ζ, transcriptional coactivator for NF-κB, the conserved nuclear protein Akirin2 stimulates pro-inflammatory gene promoters in mouse macrophages during innate immune responses to viral or bacterial infection.},
keywords = {Adaptor Proteins, Animals, Cell Nucleus, Chromatin Assembly and Disassembly, chromatin remodeling, Chromosomal Proteins, cytokine, Cytokines, Female, Gene Expression Regulation, gene regulation, Genetic, hoffmann, Humans, Immunity, Innate, innate immunity, Knockout, Listeria monocytogenes, M3i, Macrophages, Male, Mice, Multiprotein Complexes, Non-Histone, Nuclear Proteins, Promoter Regions, Protein Binding, reichhart, Repressor Proteins, Sequence Deletion, Signal Transducing, Transcriptional Activation},
pubstate = {published},
tppubtype = {article}
}
Lamiable Olivier, Imler Jean-Luc
Induced antiviral innate immunity in Drosophila Journal Article
In: Current Opinion in Microbiology, vol. 20, pp. 62–68, 2014, ISSN: 1879-0364.
Abstract | Links | BibTeX | Tags: Animals, Gene Expression Regulation, Host-Pathogen Interactions, imler, Immunity, Innate, M3i, RNA Viruses, Signal Transduction
@article{lamiable_induced_2014,
title = {Induced antiviral innate immunity in Drosophila},
author = {Olivier Lamiable and Jean-Luc Imler},
doi = {10.1016/j.mib.2014.05.006},
issn = {1879-0364},
year = {2014},
date = {2014-08-01},
journal = {Current Opinion in Microbiology},
volume = {20},
pages = {62--68},
abstract = {Immunity to viral infections in the model organism Drosophila melanogaster involves both RNA interference and additional induced responses. The latter include not only cellular mechanisms such as programmed cell death and autophagy, but also the induction of a large set of genes, some of which contribute to the control of viral replication and resistance to infection. This induced response to infection is complex and involves both virus-specific and cell-type specific mechanisms. We review here recent developments, from the sensing of viral infection to the induction of signaling pathways and production of antiviral effector molecules. Our current understanding, although still partial, validates the Drosophila model of antiviral induced immunity for insect pests and disease vectors, as well as for mammals.},
keywords = {Animals, Gene Expression Regulation, Host-Pathogen Interactions, imler, Immunity, Innate, M3i, RNA Viruses, Signal Transduction},
pubstate = {published},
tppubtype = {article}
}
Goto Akira, Fukuyama Hidehiro, Imler Jean-Luc, Hoffmann Jules A
In: The Journal of Biological Chemistry, vol. 289, no. 30, pp. 20470–20476, 2014, ISSN: 1083-351X.
Abstract | Links | BibTeX | Tags: Animals, Cell Line, Chromatin Assembly and Disassembly, Epistasis, Escherichia coli, Escherichia coli Infections, Genetic, hoffmann, imler, Immunity, Innate, M3i, NF-kappa B, Repressor Proteins, Signal Transduction, Transcription Factors
@article{goto_chromatin_2014,
title = {The chromatin regulator DMAP1 modulates activity of the nuclear factor B (NF-B) transcription factor Relish in the Drosophila innate immune response},
author = {Akira Goto and Hidehiro Fukuyama and Jean-Luc Imler and Jules A Hoffmann},
doi = {10.1074/jbc.C114.553719},
issn = {1083-351X},
year = {2014},
date = {2014-07-01},
journal = {The Journal of Biological Chemistry},
volume = {289},
number = {30},
pages = {20470--20476},
abstract = {The host defense of the model organism Drosophila is under the control of two major signaling cascades controlling transcription factors of the NF-B family, the Toll and the immune deficiency (IMD) pathways. The latter shares extensive similarities with the mammalian TNF-R pathway and was initially discovered for its role in anti-Gram-negative bacterial reactions. A previous interactome study from this laboratory reported that an unexpectedly large number of proteins are binding to the canonical components of the IMD pathway. Here, we focus on DNA methyltransferase-associated protein 1 (DMAP1), which this study identified as an interactant of Relish, a Drosophila transcription factor reminiscent of the mammalian p105 NF-B protein. We show that silencing of DMAP1 expression both in S2 cells and in flies results in a significant reduction of Escherichia coli-induced expression of antimicrobial peptides. Epistatic analysis indicates that DMAP1 acts in parallel or downstream of Relish. Co-immunoprecipitation experiments further reveal that, in addition to Relish, DMAP1 also interacts with Akirin and the Brahma-associated protein 55 kDa (BAP55). Taken together, these results reveal that DMAP1 is a novel nuclear modulator of the IMD pathway, possibly acting at the level of chromatin remodeling.},
keywords = {Animals, Cell Line, Chromatin Assembly and Disassembly, Epistasis, Escherichia coli, Escherichia coli Infections, Genetic, hoffmann, imler, Immunity, Innate, M3i, NF-kappa B, Repressor Proteins, Signal Transduction, Transcription Factors},
pubstate = {published},
tppubtype = {article}
}
Imler Jean-Luc
Overview of Drosophila immunity: a historical perspective Journal Article
In: Developmental and Comparative Immunology, vol. 42, no. 1, pp. 3–15, 2014, ISSN: 1879-0089.
Abstract | Links | BibTeX | Tags: Allergy and Immunology, Animal, Animals, Antimicrobial Cationic Peptides, Antimicrobial peptides, history, Humans, IMD pathway, imler, Immunity, Innate, innate immunity, M3i, Models, Pattern recognition receptors, Signal Transduction, Toll-Like Receptors
@article{imler_overview_2014,
title = {Overview of Drosophila immunity: a historical perspective},
author = {Jean-Luc Imler},
doi = {10.1016/j.dci.2013.08.018},
issn = {1879-0089},
year = {2014},
date = {2014-01-01},
journal = {Developmental and Comparative Immunology},
volume = {42},
number = {1},
pages = {3--15},
abstract = {The functional analysis of genes from the model organism Drosophila melanogaster has provided invaluable information for many cellular and developmental or physiological processes, including immunity. The best-understood aspect of Drosophila immunity is the inducible humoral response, first recognized in 1972. This pioneering work led to a remarkable series of findings over the next 30 years, ranging from the identification and characterization of the antimicrobial peptides produced, to the deciphering of the signalling pathways activating the genes that encode them and, ultimately, to the discovery of the receptors sensing infection. These studies on an insect model coincided with a revival of the field of innate immunity, and had an unanticipated impact on the biomedical field.},
keywords = {Allergy and Immunology, Animal, Animals, Antimicrobial Cationic Peptides, Antimicrobial peptides, history, Humans, IMD pathway, imler, Immunity, Innate, innate immunity, M3i, Models, Pattern recognition receptors, Signal Transduction, Toll-Like Receptors},
pubstate = {published},
tppubtype = {article}
}
2013
Ferrandon Dominique
The complementary facets of epithelial host defenses in the genetic model organism Drosophila melanogaster: from resistance to resilience Journal Article
In: Curr. Opin. Immunol., vol. 25, no. 1, pp. 59–70, 2013, ISSN: 1879-0372.
Abstract | Links | BibTeX | Tags: Adult Stem Cells, aging, Animal, Animals, Cell Proliferation, Disease Models, Enterocytes, ferrandon, Humans, Immunity, Intestinal Mucosa, M3i, Metagenome, Stem Cell Niche, Wound Healing
@article{ferrandon_complementary_2013b,
title = {The complementary facets of epithelial host defenses in the genetic model organism Drosophila melanogaster: from resistance to resilience},
author = {Dominique Ferrandon},
doi = {10.1016/j.coi.2012.11.008},
issn = {1879-0372},
year = {2013},
date = {2013-02-01},
journal = {Curr. Opin. Immunol.},
volume = {25},
number = {1},
pages = {59--70},
abstract = {Significant advances have been made in our understanding of the host defense against microbial infections taking place at frontier epithelia of Drosophila flies. Immune deficiency (IMD), the major NF-κB immune response pathway induced in these epithelia, displays remarkable adaptations in its activation and regulation in the respiratory and digestive tract. The host defense against ingested pathogens is not limited to resistance, that is, the immune response. It also involves resilience, the capacity of the host to endure and repair damages inflicted by pathogens or the host's own immune response. For instance, enterocytes damaged by pathogens, the microbiota of aging flies, or host-derived reactive oxygen species (ROS), are replaced under the control of multiple pathways by the compensatory proliferation of intestinal stem cells (ISCs).},
keywords = {Adult Stem Cells, aging, Animal, Animals, Cell Proliferation, Disease Models, Enterocytes, ferrandon, Humans, Immunity, Intestinal Mucosa, M3i, Metagenome, Stem Cell Niche, Wound Healing},
pubstate = {published},
tppubtype = {article}
}
Baron Olga Lucia, van West Pieter, Industri Benoit, Ponchet Michel, Dubreuil Géraldine, Gourbal Benjamin, Reichhart Jean-Marc, Coustau Christine
Parental transfer of the antimicrobial protein LBP/BPI protects Biomphalaria glabrata eggs against oomycete infections Journal Article
In: PLoS Pathog., vol. 9, no. 12, pp. e1003792, 2013, ISSN: 1553-7374.
Abstract | Links | BibTeX | Tags: Acute-Phase Proteins, Animals, Antimicrobial Cationic Peptides, Biomphalaria, Blood Proteins, Carrier Proteins, Cell Membrane, Cell Membrane Permeability, Cloning, Escherichia coli, Female, Immunity, infection, M3i, Maternally-Acquired, Membrane Glycoproteins, Microbial Sensitivity Tests, Molecular, Oomycetes, Recombinant Proteins, reichhart, Zygote
@article{baron_parental_2013,
title = {Parental transfer of the antimicrobial protein LBP/BPI protects Biomphalaria glabrata eggs against oomycete infections},
author = {Olga Lucia Baron and Pieter van West and Benoit Industri and Michel Ponchet and Géraldine Dubreuil and Benjamin Gourbal and Jean-Marc Reichhart and Christine Coustau},
doi = {10.1371/journal.ppat.1003792},
issn = {1553-7374},
year = {2013},
date = {2013-01-01},
journal = {PLoS Pathog.},
volume = {9},
number = {12},
pages = {e1003792},
abstract = {Vertebrate females transfer antibodies via the placenta, colostrum and milk or via the egg yolk to protect their immunologically immature offspring against pathogens. This evolutionarily important transfer of immunity is poorly documented in invertebrates and basic questions remain regarding the nature and extent of parental protection of offspring. In this study, we show that a lipopolysaccharide binding protein/bactericidal permeability increasing protein family member from the invertebrate Biomphalaria glabrata (BgLBP/BPI1) is massively loaded into the eggs of this freshwater snail. Native and recombinant proteins displayed conserved LPS-binding, antibacterial and membrane permeabilizing activities. A broad screening of various pathogens revealed a previously unknown biocidal activity of the protein against pathogenic water molds (oomycetes), which is conserved in human BPI. RNAi-dependent silencing of LBP/BPI in the parent snails resulted in a significant reduction of reproductive success and extensive death of eggs through oomycete infections. This work provides the first functional evidence that a LBP/BPI is involved in the parental immune protection of invertebrate offspring and reveals a novel and conserved biocidal activity for LBP/BPI family members.},
keywords = {Acute-Phase Proteins, Animals, Antimicrobial Cationic Peptides, Biomphalaria, Blood Proteins, Carrier Proteins, Cell Membrane, Cell Membrane Permeability, Cloning, Escherichia coli, Female, Immunity, infection, M3i, Maternally-Acquired, Membrane Glycoproteins, Microbial Sensitivity Tests, Molecular, Oomycetes, Recombinant Proteins, reichhart, Zygote},
pubstate = {published},
tppubtype = {article}
}
Ayyaz Arshad, Giammarinaro Philippe, Liégeois Samuel, Lestradet Matthieu, Ferrandon Dominique
In: Immunobiology, vol. 218, no. 4, pp. 635–644, 2013, ISSN: 1878-3279.
Abstract | Links | BibTeX | Tags: Adaptor Proteins, Animal, Animals, Antigens, Differentiation, Disease Models, ferrandon, Immunity, Immunologic, Innate, Intestinal Diseases, M3i, Mucosal, Mutation, Receptors, Signal Transducing, Staphylococcal Infections, Staphylococcus, Starvation, Toll-Like Receptors
@article{ayyaz_negative_2013b,
title = {A negative role for MyD88 in the resistance to starvation as revealed in an intestinal infection of Drosophila melanogaster with the Gram-positive bacterium Staphylococcus xylosus},
author = {Arshad Ayyaz and Philippe Giammarinaro and Samuel Liégeois and Matthieu Lestradet and Dominique Ferrandon},
doi = {10.1016/j.imbio.2012.07.027},
issn = {1878-3279},
year = {2013},
date = {2013-01-01},
journal = {Immunobiology},
volume = {218},
number = {4},
pages = {635--644},
abstract = {Drosophila melanogaster is a useful model to investigate mucosal immunity. The immune response to intestinal infections is mediated partly by the Immune deficiency (IMD) pathway, which only gets activated by a type of peptidoglycan lacking in several medically important Gram-positive bacterial species such as Staphylococcus. Thus, the intestinal host defense against such bacterial strains remains poorly known. Here, we have used Staphylococcus xylosus to develop a model of intestinal infections by Gram-positive bacteria. S. xylosus behaves as an opportunistic pathogen in a septic injury model, being able to kill only flies immunodeficient either for the Toll pathway or the cellular response. When ingested, it is controlled by IMD-independent host intestinal defenses, yet flies eventually die. Having excluded an overreaction of the immune response and the action of toxins, we find that flies actually succumb to starvation, likely as a result of a competition for sucrose between the bacteria and the flies. Fat stores of wild-type flies are severely reduced within a day, a period when sucrose is not yet exhausted in the feeding solution. Interestingly, the Toll pathway mutant MyD88 is more resistant to the ingestion of S. xylosus and to starvation than wild-type flies. MyD88 flies do not rapidly deplete their fat stores when starved, in contrast to wild-type flies. Thus, we have uncovered a novel function of MyD88 in the regulation of metabolism that appears to be independent of its known roles in immunity and development.},
keywords = {Adaptor Proteins, Animal, Animals, Antigens, Differentiation, Disease Models, ferrandon, Immunity, Immunologic, Innate, Intestinal Diseases, M3i, Mucosal, Mutation, Receptors, Signal Transducing, Staphylococcal Infections, Staphylococcus, Starvation, Toll-Like Receptors},
pubstate = {published},
tppubtype = {article}
}
2012
Delogu Lucia Gemma, Venturelli Enrica, Manetti Roberto, Pinna Gérard Aimé, Carru Ciriaco, Madeddu Roberto, Murgia Luciano, Sgarrella Francesco, Dumortier Hélène, Bianco Alberto
Ex vivo impact of functionalized carbon nanotubes on human immune cells Journal Article
In: Nanomedicine (London, England), vol. 7, no. 2, pp. 231–243, 2012, ISSN: 1748-6963.
Abstract | Links | BibTeX | Tags: carbon, Cells, Cultured, Cytokines, Dumortier, Humans, I2CT, Immunity, Innate, Materials Testing, Nanotubes, T-Lymphocytes, Team-Bianco, Team-Dumortier
@article{delogu_ex_2012,
title = {Ex vivo impact of functionalized carbon nanotubes on human immune cells},
author = {Lucia Gemma Delogu and Enrica Venturelli and Roberto Manetti and Gérard Aimé Pinna and Ciriaco Carru and Roberto Madeddu and Luciano Murgia and Francesco Sgarrella and Hélène Dumortier and Alberto Bianco},
doi = {10.2217/nnm.11.101},
issn = {1748-6963},
year = {2012},
date = {2012-02-01},
journal = {Nanomedicine (London, England)},
volume = {7},
number = {2},
pages = {231--243},
abstract = {AIM: Different studies, carried out by us and others, have investigated the impact of carbon nanotubes (CNTs) in vitro and in animal models. To date, only a few studies have been performed on human cells ex vivo. There is also a lack of comparison between CNTs with varied functionalization and structural properties and their impact on different cell types.
MATERIALS & METHODS: The present ex vivo human study focuses on the impact of a series of functionalized multiwalled CNTs on human T and B lymphocytes, natural killer (NK) cells and monocytes.
RESULTS: Smaller diameter nanotubes are internalized more efficiently. Viability assays displayed the absence of cytotoxicity of all multiwalled CNTs used. Activation assay demonstrated a strong effect on monocytes and NK cells.
CONCLUSION: Our results, on human cells ex vivo, confirmed previous studies demonstrating appropriately functionalized CNTs are nontoxic. The effects on cell functionality were significant for the monocytes and NK cells. These findings encourage the possible use of CNTs for biomedical applications either as carriers of therapeutic molecules or as immune modulator systems.},
keywords = {carbon, Cells, Cultured, Cytokines, Dumortier, Humans, I2CT, Immunity, Innate, Materials Testing, Nanotubes, T-Lymphocytes, Team-Bianco, Team-Dumortier},
pubstate = {published},
tppubtype = {article}
}
MATERIALS & METHODS: The present ex vivo human study focuses on the impact of a series of functionalized multiwalled CNTs on human T and B lymphocytes, natural killer (NK) cells and monocytes.
RESULTS: Smaller diameter nanotubes are internalized more efficiently. Viability assays displayed the absence of cytotoxicity of all multiwalled CNTs used. Activation assay demonstrated a strong effect on monocytes and NK cells.
CONCLUSION: Our results, on human cells ex vivo, confirmed previous studies demonstrating appropriately functionalized CNTs are nontoxic. The effects on cell functionality were significant for the monocytes and NK cells. These findings encourage the possible use of CNTs for biomedical applications either as carriers of therapeutic molecules or as immune modulator systems.
Deleury Emeline, Dubreuil Géraldine, Elangovan Namasivayam, Wajnberg Eric, Reichhart Jean-Marc, Gourbal Benjamin, Duval David, Baron Olga Lucia, Gouzy Jérôme, Coustau Christine
Specific versus non-specific immune responses in an invertebrate species evidenced by a comparative de novo sequencing study Journal Article
In: PLoS ONE, vol. 7, no. 3, pp. e32512, 2012, ISSN: 1932-6203.
Abstract | Links | BibTeX | Tags: Animals, Biomphalaria, Calmodulin, Cluster Analysis, Complementary, DNA, Expressed Sequence Tags, Ferritins, Gene Expression Profiling, Gene Expression Regulation, High-Throughput Nucleotide Sequencing, Immunity, Innate, M3i, messenger, Pattern Recognition, Phylogeny, Receptors, reichhart, RNA, Signal Transduction, Zinc Fingers
@article{deleury_specific_2012,
title = {Specific versus non-specific immune responses in an invertebrate species evidenced by a comparative de novo sequencing study},
author = {Emeline Deleury and Géraldine Dubreuil and Namasivayam Elangovan and Eric Wajnberg and Jean-Marc Reichhart and Benjamin Gourbal and David Duval and Olga Lucia Baron and Jérôme Gouzy and Christine Coustau},
doi = {10.1371/journal.pone.0032512},
issn = {1932-6203},
year = {2012},
date = {2012-01-01},
journal = {PLoS ONE},
volume = {7},
number = {3},
pages = {e32512},
abstract = {Our present understanding of the functioning and evolutionary history of invertebrate innate immunity derives mostly from studies on a few model species belonging to ecdysozoa. In particular, the characterization of signaling pathways dedicated to specific responses towards fungi and Gram-positive or Gram-negative bacteria in Drosophila melanogaster challenged our original view of a non-specific immunity in invertebrates. However, much remains to be elucidated from lophotrochozoan species. To investigate the global specificity of the immune response in the fresh-water snail Biomphalaria glabrata, we used massive Illumina sequencing of 5'-end cDNAs to compare expression profiles after challenge by Gram-positive or Gram-negative bacteria or after a yeast challenge. 5'-end cDNA sequencing of the libraries yielded over 12 millions high quality reads. To link these short reads to expressed genes, we prepared a reference transcriptomic database through automatic assembly and annotation of the 758,510 redundant sequences (ESTs, mRNAs) of B. glabrata available in public databases. Computational analysis of Illumina reads followed by multivariate analyses allowed identification of 1685 candidate transcripts differentially expressed after an immune challenge, with a two fold ratio between transcripts showing a challenge-specific expression versus a lower or non-specific differential expression. Differential expression has been validated using quantitative PCR for a subset of randomly selected candidates. Predicted functions of annotated candidates (approx. 700 unisequences) belonged to a large extend to similar functional categories or protein types. This work significantly expands upon previous gene discovery and expression studies on B. glabrata and suggests that responses to various pathogens may involve similar immune processes or signaling pathways but different genes belonging to multigenic families. These results raise the question of the importance of gene duplication and acquisition of paralog functional diversity in the evolution of specific invertebrate immune responses.},
keywords = {Animals, Biomphalaria, Calmodulin, Cluster Analysis, Complementary, DNA, Expressed Sequence Tags, Ferritins, Gene Expression Profiling, Gene Expression Regulation, High-Throughput Nucleotide Sequencing, Immunity, Innate, M3i, messenger, Pattern Recognition, Phylogeny, Receptors, reichhart, RNA, Signal Transduction, Zinc Fingers},
pubstate = {published},
tppubtype = {article}
}
Romani N, Flacher V, Tripp C H, Sparber F, Ebner S, Stoitzner P
Targeting skin dendritic cells to improve intradermal vaccination Journal Article
In: Current Topics in Microbiology and Immunology, vol. 351, pp. 113–138, 2012, ISSN: 0070-217X.
Abstract | Links | BibTeX | Tags: Adaptive Immunity, administration & dosage, Analysis, Animals, Antibodies, antibody, Antigen, ANTIGEN PRESENTING CELLS, Antigen-Presenting Cells, Antigens, B CELLS, B-Lymphocytes, Bacterial Infections, Biosynthesis, C-Type, CD, CD14, CD1a, Cell Lineage, cytokine, Cytokines, cytology, Cytotoxic, Dendritic Cells, DERMATOLOGY, DERMIS, Drug Delivery Systems, Expression, Human, Humans, Immunity, Immunology, INDUCTION, Injections, Innate, Intradermal, Langerhans Cells, LECTIN, Lectins, Lymphocyte Activation, Lymphocytes, Mannose-Binding Lectins, methods, Mice, mouse, Muscle, prevention & control, PRODUCTION, Protein, review, Skin, SUBSETS, T-Lymphocytes, Team-Mueller, tolerance, Vaccination, vaccine, Vaccines, Virus Diseases
@article{romani_targeting_2012,
title = {Targeting skin dendritic cells to improve intradermal vaccination},
author = {N Romani and V Flacher and C H Tripp and F Sparber and S Ebner and P Stoitzner},
doi = {10.1007/82_2010_118},
issn = {0070-217X},
year = {2012},
date = {2012-01-01},
journal = {Current Topics in Microbiology and Immunology},
volume = {351},
pages = {113--138},
abstract = {Vaccinations in medicine are typically administered into the muscle beneath the skin or into the subcutaneous fat. As a consequence, the vaccine is immunologically processed by antigen-presenting cells of the skin or the muscle. Recent evidence suggests that the clinically seldom used intradermal route is effective and possibly even superior to the conventional subcutaneous or intramuscular route. Several types of professional antigen-presenting cells inhabit the healthy skin. Epidermal Langerhans cells (CD207/langerin(+)), dermal langerin(neg), and dermal langerin(+) dendritic cells (DC) have been described, the latter subset so far only in mouse skin. In human skin langerin(neg) dermal DC can be further classified based on their reciprocal expression of CD1a and CD14. The relative contributions of these subsets to the generation of immunity or tolerance are still unclear. Yet, specializations of these different populations have become apparent. Langerhans cells in human skin appear to be specialized for induction of cytotoxic T lymphocytes; human CD14(+) dermal DC can promote antibody production by B cells. It is currently attempted to rationally devise and improve vaccines by harnessing such specific properties of skin DC. This could be achieved by specifically targeting functionally diverse skin DC subsets. We discuss here advances in our knowledge on the immunological properties of skin DC and strategies to significantly improve the outcome of vaccinations by applying this knowledge.},
keywords = {Adaptive Immunity, administration & dosage, Analysis, Animals, Antibodies, antibody, Antigen, ANTIGEN PRESENTING CELLS, Antigen-Presenting Cells, Antigens, B CELLS, B-Lymphocytes, Bacterial Infections, Biosynthesis, C-Type, CD, CD14, CD1a, Cell Lineage, cytokine, Cytokines, cytology, Cytotoxic, Dendritic Cells, DERMATOLOGY, DERMIS, Drug Delivery Systems, Expression, Human, Humans, Immunity, Immunology, INDUCTION, Injections, Innate, Intradermal, Langerhans Cells, LECTIN, Lectins, Lymphocyte Activation, Lymphocytes, Mannose-Binding Lectins, methods, Mice, mouse, Muscle, prevention & control, PRODUCTION, Protein, review, Skin, SUBSETS, T-Lymphocytes, Team-Mueller, tolerance, Vaccination, vaccine, Vaccines, Virus Diseases},
pubstate = {published},
tppubtype = {article}
}
2011
Limmer Stefanie, Haller Samantha, Drenkard Eliana, Lee Janice, Yu Shen, Kocks Christine, Ausubel Frederick M, Ferrandon Dominique
Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model Journal Article
In: Proc. Natl. Acad. Sci. U.S.A., vol. 108, no. 42, pp. 17378–17383, 2011, ISSN: 1091-6490.
Abstract | Links | BibTeX | Tags: Animal, Animals, Bacteremia, Bacterial Proteins, Cellular, Disease Models, ferrandon, Genes, Genetically Modified, Hemolymph, Host-Pathogen Interactions, Immunity, Insect, M3i, Mutation, Oral, Pseudomonas aeruginosa, Pseudomonas Infections, Quorum Sensing, Trans-Activators, Viral, Virulence
@article{limmer_pseudomonas_2011b,
title = {Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model},
author = {Stefanie Limmer and Samantha Haller and Eliana Drenkard and Janice Lee and Shen Yu and Christine Kocks and Frederick M Ausubel and Dominique Ferrandon},
doi = {10.1073/pnas.1114907108},
issn = {1091-6490},
year = {2011},
date = {2011-10-01},
journal = {Proc. Natl. Acad. Sci. U.S.A.},
volume = {108},
number = {42},
pages = {17378--17383},
abstract = {An in-depth mechanistic understanding of microbial infection necessitates a molecular dissection of host-pathogen relationships. Both Drosophila melanogaster and Pseudomonas aeruginosa have been intensively studied. Here, we analyze the infection of D. melanogaster by P. aeruginosa by using mutants in both host and pathogen. We show that orally ingested P. aeruginosa crosses the intestinal barrier and then proliferates in the hemolymph, thereby causing the infected flies to die of bacteremia. Host defenses against ingested P. aeruginosa included an immune deficiency (IMD) response in the intestinal epithelium, systemic Toll and IMD pathway responses, and a cellular immune response controlling bacteria in the hemocoel. Although the observed cellular and intestinal immune responses appeared to act throughout the course of the infection, there was a late onset of the systemic IMD and Toll responses. In this oral infection model, P. aeruginosa PA14 did not require its type III secretion system or other well-studied virulence factors such as the two-component response regulator GacA or the protease AprA for virulence. In contrast, the quorum-sensing transcription factor RhlR, but surprisingly not LasR, played a key role in counteracting the cellular immune response against PA14, possibly at an early stage when only a few bacteria are present in the hemocoel. These results illustrate the power of studying infection from the dual perspective of host and pathogen by revealing that RhlR plays a more complex role during pathogenesis than previously appreciated.},
keywords = {Animal, Animals, Bacteremia, Bacterial Proteins, Cellular, Disease Models, ferrandon, Genes, Genetically Modified, Hemolymph, Host-Pathogen Interactions, Immunity, Insect, M3i, Mutation, Oral, Pseudomonas aeruginosa, Pseudomonas Infections, Quorum Sensing, Trans-Activators, Viral, Virulence},
pubstate = {published},
tppubtype = {article}
}
Chtarbanova Stanislava, Imler Jean-Luc
Microbial sensing by Toll receptors: a historical perspective Journal Article
In: Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 8, pp. 1734–1738, 2011, ISSN: 1524-4636.
Abstract | Links | BibTeX | Tags: Animals, Cardiovascular Diseases, history, Host-Pathogen Interactions, Humans, imler, Immunity, Innate, M3i, Macrophages, Toll-Like Receptors
@article{chtarbanova_microbial_2011,
title = {Microbial sensing by Toll receptors: a historical perspective},
author = {Stanislava Chtarbanova and Jean-Luc Imler},
doi = {10.1161/ATVBAHA.108.179523},
issn = {1524-4636},
year = {2011},
date = {2011-08-01},
journal = {Arteriosclerosis, Thrombosis, and Vascular Biology},
volume = {31},
number = {8},
pages = {1734--1738},
abstract = {The family of Toll-like receptors plays an essential role in the induction of the immune response. These receptors sense the presence of microbial ligands and activate the nuclear factor-κB transcription factor. We review the key studies that led from the formulation of the concept of pattern recognition receptors to the characterization of Toll-like receptors, insisting on the important role played by the model organism Drosophila melanogaster and on the increasing evidence connecting these receptors to cardiovascular disease.},
keywords = {Animals, Cardiovascular Diseases, history, Host-Pathogen Interactions, Humans, imler, Immunity, Innate, M3i, Macrophages, Toll-Like Receptors},
pubstate = {published},
tppubtype = {article}
}
Eleftherianos Ioannis, Won Sungyong, Chtarbanova Stanislava, Squiban Barbara, Ocorr Karen, Bodmer Rolf, Beutler Bruce, Hoffmann Jules A, Imler Jean-Luc
ATP-sensitive potassium channel (K(ATP))-dependent regulation of cardiotropic viral infections Journal Article
In: Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 29, pp. 12024–12029, 2011, ISSN: 1091-6490.
Abstract | Links | BibTeX | Tags: Animals, Heart, HeLa Cells, hoffmann, Humans, imler, Immunity, Immunoblotting, Inbred C57BL, Innate, KATP Channels, M3i, Mice, Nodaviridae, Pinacidil, Reverse Transcriptase Polymerase Chain Reaction, RNA Interference, Tolbutamide, Viral Load, Viremia
@article{eleftherianos_atp-sensitive_2011,
title = {ATP-sensitive potassium channel (K(ATP))-dependent regulation of cardiotropic viral infections},
author = {Ioannis Eleftherianos and Sungyong Won and Stanislava Chtarbanova and Barbara Squiban and Karen Ocorr and Rolf Bodmer and Bruce Beutler and Jules A Hoffmann and Jean-Luc Imler},
doi = {10.1073/pnas.1108926108},
issn = {1091-6490},
year = {2011},
date = {2011-07-01},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
volume = {108},
number = {29},
pages = {12024--12029},
abstract = {The effects of the cellular environment on innate immunity remain poorly characterized. Here, we show that in Drosophila ATP-sensitive potassium channels (K(ATP)) mediate resistance to a cardiotropic RNA virus, Flock House virus (FHV). FHV viral load in the heart rapidly increases in K(ATP) mutant flies, leading to increased viremia and accelerated death. The effect of K(ATP) channels is dependent on the RNA interference genes Dcr-2, AGO2, and r2d2, indicating that an activity associated with this potassium channel participates in this antiviral pathway in Drosophila. Flies treated with the K(ATP) agonist drug pinacidil are protected against FHV infection, thus demonstrating the importance of this regulation of innate immunity by the cellular environment in the heart. In mice, the Coxsackievirus B3 replicates to higher titers in the hearts of mayday mutant animals, which are deficient in the Kir6.1 subunit of K(ATP) channels, than in controls. Together, our data suggest that K(ATP) channel deregulation can have a critical impact on innate antiviral immunity in the heart.},
keywords = {Animals, Heart, HeLa Cells, hoffmann, Humans, imler, Immunity, Immunoblotting, Inbred C57BL, Innate, KATP Channels, M3i, Mice, Nodaviridae, Pinacidil, Reverse Transcriptase Polymerase Chain Reaction, RNA Interference, Tolbutamide, Viral Load, Viremia},
pubstate = {published},
tppubtype = {article}
}
Aoun Richard Bou, Hetru Charles, Troxler Laurent, Doucet Daniel, Ferrandon Dominique, Matt Nicolas
Analysis of thioester-containing proteins during the innate immune response of Drosophila melanogaster Journal Article
In: J Innate Immun, vol. 3, no. 1, pp. 52–64, 2011, ISSN: 1662-8128.
Abstract | Links | BibTeX | Tags: Animals, bioinformatic, DNA, Evolution, ferrandon, Gene Expression Regulation, Hemocytes, Immunity, In Situ Hybridization, Innate, M3i, matt, Molecular, Mutation, Phylogeny, Sequence Analysis
@article{bou_aoun_analysis_2011,
title = {Analysis of thioester-containing proteins during the innate immune response of Drosophila melanogaster},
author = {Richard Bou Aoun and Charles Hetru and Laurent Troxler and Daniel Doucet and Dominique Ferrandon and Nicolas Matt},
doi = {10.1159/000321554},
issn = {1662-8128},
year = {2011},
date = {2011-01-01},
journal = {J Innate Immun},
volume = {3},
number = {1},
pages = {52--64},
abstract = {Thioester-containing proteins (TEPs) are conserved proteins among insects that are thought to be involved in innate immunity. In Drosophila, the Tep family is composed of 6 genes named Tep1-Tep6. In this study, we investigated the phylogeny, expression pattern and roles of these genes in the host defense of Drosophila. Protostomian Tep genes are clustered in 3 distinct branches, 1 of which is specific to mosquitoes. Most D. melanogaster Tep genes are expressed in hemocytes, can be induced in the fat body, and are expressed in specific regions of the hypodermis. This expression pattern is consistent with a role in innate immunity. However, we find that TEP1, TEP2, and TEP4 are not strictly required in the body cavity to fight several bacterial and fungal infections. One possibility is that Drosophila TEPs act redundantly or that their absence can be compensated by other components of the immune response. TEPs may thus provide a subtle selective advantage during evolution. Alternatively, they may be required in host defense against specific as yet unidentified natural pathogens of Drosophila.},
keywords = {Animals, bioinformatic, DNA, Evolution, ferrandon, Gene Expression Regulation, Hemocytes, Immunity, In Situ Hybridization, Innate, M3i, matt, Molecular, Mutation, Phylogeny, Sequence Analysis},
pubstate = {published},
tppubtype = {article}
}
Reichhart Jean-Marc, Gubb David, Leclerc Vincent
The Drosophila serpins: multiple functions in immunity and morphogenesis Journal Article
In: Meth. Enzymol., vol. 499, pp. 205–225, 2011, ISSN: 1557-7988.
Abstract | Links | BibTeX | Tags: Animals, Immunity, Innate, M3i, Morphogenesis, reichhart, Serpins, Signal Transduction
@article{reichhart_drosophila_2011,
title = {The Drosophila serpins: multiple functions in immunity and morphogenesis},
author = {Jean-Marc Reichhart and David Gubb and Vincent Leclerc},
doi = {10.1016/B978-0-12-386471-0.00011-0},
issn = {1557-7988},
year = {2011},
date = {2011-01-01},
journal = {Meth. Enzymol.},
volume = {499},
pages = {205--225},
abstract = {Members of the serpin superfamily of proteins have been found in all living organisms, although rarely in bacteria or fungi. They have been extensively studied in mammals, where many rapid physiological responses are regulated by inhibitory serpins. In addition to the inhibitory serpins, a large group of noninhibitory proteins with a conserved serpin fold have also been identified in mammals. These noninhibitory proteins have a wide range of functions, from storage proteins to molecular chaperones, hormone transporters, and tumor suppressors. In contrast, until recently, very little was known about insect serpins in general, or Drosophila serpins in particular. In the last decade, however, there has been an increasing interest in the serpin biology of insects. It is becoming clear that, like in mammals, a similar wide range of physiological responses are regulated in insects and that noninhibitory serpin-fold proteins also play key roles in insect biology. Drosophila is also an important model organism that can be used to study human pathologies (among which serpinopathies or other protein conformational diseases) and mechanisms of regulation of proteolytic cascades in health or to develop strategies for control of insect pests and disease vectors. As most of our knowledge on insect serpins comes from studies on the Drosophila immune response, we survey here the Drosophila serpin literature and describe the laboratory techniques that have been developed to study serpin-regulated responses in this model genetic organism.},
keywords = {Animals, Immunity, Innate, M3i, Morphogenesis, reichhart, Serpins, Signal Transduction},
pubstate = {published},
tppubtype = {article}
}
Nehme Nadine T, Quintin Jessica, Cho Ju Hyun, Lee Janice, Lafarge Marie-Céline, Kocks Christine, Ferrandon Dominique
Relative roles of the cellular and humoral responses in the Drosophila host defense against three gram-positive bacterial infections Journal Article
In: PLoS ONE, vol. 6, no. 3, pp. e14743, 2011, ISSN: 1932-6203.
Abstract | Links | BibTeX | Tags: Animals, Antimicrobial Cationic Peptides, Carrier Proteins, Cell Surface, Cellular, Enterococcus faecalis, ferrandon, Gram-Positive Bacteria, Gram-Positive Bacterial Infections, Host-Pathogen Interactions, Humoral, Immunity, Innate, M3i, Micrococcus luteus, Opsonin Proteins, Phagocytosis, Receptors, Signal Transduction, Solubility, Staphylococcus aureus
@article{nehme_relative_2011b,
title = {Relative roles of the cellular and humoral responses in the Drosophila host defense against three gram-positive bacterial infections},
author = {Nadine T Nehme and Jessica Quintin and Ju Hyun Cho and Janice Lee and Marie-Céline Lafarge and Christine Kocks and Dominique Ferrandon},
doi = {10.1371/journal.pone.0014743},
issn = {1932-6203},
year = {2011},
date = {2011-01-01},
journal = {PLoS ONE},
volume = {6},
number = {3},
pages = {e14743},
abstract = {BACKGROUND: Two NF-kappaB signaling pathways, Toll and immune deficiency (imd), are required for survival to bacterial infections in Drosophila. In response to septic injury, these pathways mediate rapid transcriptional activation of distinct sets of effector molecules, including antimicrobial peptides, which are important components of a humoral defense response. However, it is less clear to what extent macrophage-like hemocytes contribute to host defense. METHODOLOGY/PRINCIPAL FINDINGS: In order to dissect the relative importance of humoral and cellular defenses after septic injury with three different gram-positive bacteria (Micrococcus luteus, Enterococcus faecalis, Staphylococcus aureus), we used latex bead pre-injection to ablate macrophage function in flies wildtype or mutant for various Toll and imd pathway components. We found that in all three infection models a compromised phagocytic system impaired fly survival--independently of concomitant Toll or imd pathway activation. Our data failed to confirm a role of the PGRP-SA and GNBP1 Pattern Recognition Receptors for phagocytosis of S. aureus. The Drosophila scavenger receptor Eater mediates the phagocytosis by hemocytes or S2 cells of E. faecalis and S. aureus, but not of M. luteus. In the case of M. luteus and E. faecalis, but not S. aureus, decreased survival due to defective phagocytosis could be compensated for by genetically enhancing the humoral immune response. CONCLUSIONS/SIGNIFICANCE: Our results underscore the fundamental importance of both cellular and humoral mechanisms in Drosophila immunity and shed light on the balance between these two arms of host defense depending on the invading pathogen.},
keywords = {Animals, Antimicrobial Cationic Peptides, Carrier Proteins, Cell Surface, Cellular, Enterococcus faecalis, ferrandon, Gram-Positive Bacteria, Gram-Positive Bacterial Infections, Host-Pathogen Interactions, Humoral, Immunity, Innate, M3i, Micrococcus luteus, Opsonin Proteins, Phagocytosis, Receptors, Signal Transduction, Solubility, Staphylococcus aureus},
pubstate = {published},
tppubtype = {article}
}
2010
Silverman Gary A, Whisstock James C, Bottomley Stephen P, Huntington James A, Kaiserman Dion, Luke Cliff J, Pak Stephen C, Reichhart Jean-Marc, Bird Phillip I
Serpins flex their muscle: I. Putting the clamps on proteolysis in diverse biological systems Journal Article
In: J. Biol. Chem., vol. 285, no. 32, pp. 24299–24305, 2010, ISSN: 1083-351X.
Abstract | Links | BibTeX | Tags: Animals, Biological, Caenorhabditis elegans, Cell Death, Cell Differentiation, Cell Survival, Homeostasis, Humans, Immunity, Innate, M3i, Mice, Models, Phenotype, reichhart, Serpins, Transgenes, transgenic
@article{silverman_serpins_2010,
title = {Serpins flex their muscle: I. Putting the clamps on proteolysis in diverse biological systems},
author = {Gary A Silverman and James C Whisstock and Stephen P Bottomley and James A Huntington and Dion Kaiserman and Cliff J Luke and Stephen C Pak and Jean-Marc Reichhart and Phillip I Bird},
doi = {10.1074/jbc.R110.112771},
issn = {1083-351X},
year = {2010},
date = {2010-08-01},
journal = {J. Biol. Chem.},
volume = {285},
number = {32},
pages = {24299--24305},
abstract = {Serpins compose the largest superfamily of peptidase inhibitors and are well known as regulators of hemostasis and thrombolysis. Studies using model organisms, from plants to vertebrates, now show that serpins and their unique inhibitory mechanism and conformational flexibility are exploited to control proteolysis in molecular pathways associated with cell survival, development, and host defense. In addition, an increasing number of non-inhibitory serpins are emerging as important elements within a diversity of biological systems by serving as chaperones, hormone transporters, or anti-angiogenic factors.},
keywords = {Animals, Biological, Caenorhabditis elegans, Cell Death, Cell Differentiation, Cell Survival, Homeostasis, Humans, Immunity, Innate, M3i, Mice, Models, Phenotype, reichhart, Serpins, Transgenes, transgenic},
pubstate = {published},
tppubtype = {article}
}
Romani Nikolaus, Thurnher Martin, Idoyaga Juliana, Steinman Ralph M, Flacher Vincent
Targeting of antigens to skin dendritic cells: possibilities to enhance vaccine efficacy Journal Article
In: Immunology and Cell Biology, vol. 88, no. 4, pp. 424–430, 2010, ISSN: 1440-1711.
Abstract | Links | BibTeX | Tags: Animals, Antibodies, antibody, Antigen, ANTIGEN PRESENTING CELLS, Antigen-Presenting Cells, Antigens, C-Type, CD, CD14, CD1a, CROSS-PRESENTATION, Dendritic Cells, DERMATOLOGY, Expression, Human, Humans, Immunity, Immunotherapy, INDUCTION, Intradermal, Langerhans Cells, Lectins, Lymphocytes, Mannose-Binding Lectins, mouse, Receptor, Skin, SUBSETS, T-Lymphocytes, Team-Mueller, tolerance, Vaccination, vaccine, Vaccines
@article{romani_targeting_2010,
title = {Targeting of antigens to skin dendritic cells: possibilities to enhance vaccine efficacy},
author = {Nikolaus Romani and Martin Thurnher and Juliana Idoyaga and Ralph M Steinman and Vincent Flacher},
doi = {10.1038/icb.2010.39},
issn = {1440-1711},
year = {2010},
date = {2010-01-01},
journal = {Immunology and Cell Biology},
volume = {88},
number = {4},
pages = {424--430},
abstract = {Vaccinations in medicine are commonly administered through the skin. Therefore, the vaccine is immunologically processed by antigen-presenting cells of the skin. There is recent evidence that the clinically less often used intradermal route is effective; in cases even superior to the conventional subcutaneous or intramuscular route. Professional antigen-presenting cells of the skin comprise epidermal Langerhans cells (CD207/langerin(+)), dermal langerin(-) and dermal langerin(+) dendritic cells (DCs). In human skin, langerin(-) dermal DCs can be further subdivided on the basis of their reciprocal CD1a and CD14 expression. The relative contributions of these subsets to the generation of immunity or tolerance are still unclear. Langerhans cells in human skin seem to be specialized for induction of cytotoxic T lymphocytes. Likewise, mouse Langerhans cells are capable of cross-presentation and of protecting against experimental tumours. It is desirable to harness these properties for immunotherapy. A promising strategy to dramatically improve the outcome of vaccinations is 'antigen targeting'. Thereby, the vaccine is delivered directly and selectively to defined types of skin DCs. Targeting is achieved by means of coupling antigen to antibodies that recognize cell surface receptors on DCs. This approach is being widely explored. Little is known, however, about the events that take place in the skin and the DCs subsets involved therein. This topic will be discussed in this article.},
keywords = {Animals, Antibodies, antibody, Antigen, ANTIGEN PRESENTING CELLS, Antigen-Presenting Cells, Antigens, C-Type, CD, CD14, CD1a, CROSS-PRESENTATION, Dendritic Cells, DERMATOLOGY, Expression, Human, Humans, Immunity, Immunotherapy, INDUCTION, Intradermal, Langerhans Cells, Lectins, Lymphocytes, Mannose-Binding Lectins, mouse, Receptor, Skin, SUBSETS, T-Lymphocytes, Team-Mueller, tolerance, Vaccination, vaccine, Vaccines},
pubstate = {published},
tppubtype = {article}
}
2009
Cronin Shane J F, Nehme Nadine T, Limmer Stefanie, Liegeois Samuel, Pospisilik Andrew J, Schramek Daniel, Leibbrandt Andreas, de Simoes Ricardo Matos, Gruber Susanne, Puc Urszula, Ebersberger Ingo, Zoranovic Tamara, Neely Gregory G, von Haeseler Arndt, Ferrandon Dominique, Penninger Josef M
Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection Journal Article
In: Science, vol. 325, no. 5938, pp. 340–343, 2009, ISSN: 1095-9203.
Abstract | Links | BibTeX | Tags: *Genome, *RNA Interference, Animal, Animals, Cell Proliferation, Drosophila melanogaster/*genetics/immunology/*microbiology, Drosophila Proteins/genetics/metabolism, Epithelial Cells, Epithelial Cells/cytology/physiology, ferrandon, Genetically Modified, Genome, Hemocytes, Hemocytes/immunology/metabolism/microbiology, Homeostasis, Immunity, Innate, Innate/*genetics, Insect, Intestinal Mucosa, Intestinal Mucosa/cytology/immunology/metabolism/microbiology, Janus Kinases, Janus Kinases/genetics/metabolism, M3i, Models, RNA Interference, Serratia Infections, Serratia Infections/genetics/*immunology/microbiology, Serratia marcescens, Serratia marcescens/*immunology/physiology, Signal Transduction, STAT Transcription Factors, STAT Transcription Factors/genetics/metabolism, Stem Cells, Stem Cells/cytology/physiology
@article{cronin_genome-wide_2009b,
title = {Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection},
author = {Shane J F Cronin and Nadine T Nehme and Stefanie Limmer and Samuel Liegeois and Andrew J Pospisilik and Daniel Schramek and Andreas Leibbrandt and Ricardo Matos de Simoes and Susanne Gruber and Urszula Puc and Ingo Ebersberger and Tamara Zoranovic and Gregory G Neely and Arndt von Haeseler and Dominique Ferrandon and Josef M Penninger},
doi = {10.1126/science.1173164},
issn = {1095-9203},
year = {2009},
date = {2009-01-01},
journal = {Science},
volume = {325},
number = {5938},
pages = {340--343},
abstract = {Innate immunity represents the first line of defense in animals. We report a genome-wide in vivo Drosophila RNA interference screen to uncover genes involved in susceptibility or resistance to intestinal infection with the bacterium Serratia marcescens. We first employed whole-organism gene suppression, followed by tissue-specific silencing in gut epithelium or hemocytes to identify several hundred genes involved in intestinal antibacterial immunity. Among the pathways identified, we showed that the JAK-STAT signaling pathway controls host defense in the gut by regulating stem cell proliferation and thus epithelial cell homeostasis. Therefore, we revealed multiple genes involved in antibacterial defense and the regulation of innate immunity.},
keywords = {*Genome, *RNA Interference, Animal, Animals, Cell Proliferation, Drosophila melanogaster/*genetics/immunology/*microbiology, Drosophila Proteins/genetics/metabolism, Epithelial Cells, Epithelial Cells/cytology/physiology, ferrandon, Genetically Modified, Genome, Hemocytes, Hemocytes/immunology/metabolism/microbiology, Homeostasis, Immunity, Innate, Innate/*genetics, Insect, Intestinal Mucosa, Intestinal Mucosa/cytology/immunology/metabolism/microbiology, Janus Kinases, Janus Kinases/genetics/metabolism, M3i, Models, RNA Interference, Serratia Infections, Serratia Infections/genetics/*immunology/microbiology, Serratia marcescens, Serratia marcescens/*immunology/physiology, Signal Transduction, STAT Transcription Factors, STAT Transcription Factors/genetics/metabolism, Stem Cells, Stem Cells/cytology/physiology},
pubstate = {published},
tppubtype = {article}
}
2008
Goto Akira, Matsushita Kazufumi, Gesellchen Viola, Chamy Laure El, Kuttenkeuler David, Takeuchi Osamu, Hoffmann Jules A, Akira Shizuo, Boutros Michael, Reichhart Jean-Marc
Akirins are highly conserved nuclear proteins required for NF-kappaB-dependent gene expression in drosophila and mice Journal Article
In: Nat. Immunol., vol. 9, no. 1, pp. 97–104, 2008, ISSN: 1529-2916.
Abstract | Links | BibTeX | Tags: Animals, Cell Line, Embryo, Fibroblasts, hoffmann, Humans, Immunity, Innate, Interleukin-1beta, M3i, Mammalian, Mice, NF-kappa B, Nuclear Proteins, Proteins, reichhart, Signal Transduction, Toll-Like Receptors, transgenic, Tumor Necrosis Factor-alpha
@article{goto_akirins_2008,
title = {Akirins are highly conserved nuclear proteins required for NF-kappaB-dependent gene expression in drosophila and mice},
author = {Akira Goto and Kazufumi Matsushita and Viola Gesellchen and Laure El Chamy and David Kuttenkeuler and Osamu Takeuchi and Jules A Hoffmann and Shizuo Akira and Michael Boutros and Jean-Marc Reichhart},
doi = {10.1038/ni1543},
issn = {1529-2916},
year = {2008},
date = {2008-01-01},
journal = {Nat. Immunol.},
volume = {9},
number = {1},
pages = {97--104},
abstract = {During a genome-wide screen with RNA-mediated interference, we isolated CG8580 as a gene involved in the innate immune response of Drosophila melanogaster. CG8580, which we called Akirin, encoded a protein that acted in parallel with the NF-kappaB transcription factor downstream of the Imd pathway and was required for defense against Gram-negative bacteria. Akirin is highly conserved, and the human genome contains two homologs, one of which was able to rescue the loss-of-function phenotype in drosophila cells. Akirins were strictly localized to the nucleus. Knockout of both Akirin homologs in mice showed that one had an essential function downstream of the Toll-like receptor, tumor necrosis factor and interleukin (IL)-1beta signaling pathways leading to the production of IL-6. Thus, Akirin is a conserved nuclear factor required for innate immune responses.},
keywords = {Animals, Cell Line, Embryo, Fibroblasts, hoffmann, Humans, Immunity, Innate, Interleukin-1beta, M3i, Mammalian, Mice, NF-kappa B, Nuclear Proteins, Proteins, reichhart, Signal Transduction, Toll-Like Receptors, transgenic, Tumor Necrosis Factor-alpha},
pubstate = {published},
tppubtype = {article}
}
Huszar Tünde, Imler Jean-Luc
Drosophila viruses and the study of antiviral host-defense Journal Article
In: Advances in Virus Research, vol. 72, pp. 227–265, 2008, ISSN: 0065-3527.
Abstract | Links | BibTeX | Tags: Animals, Host-Pathogen Interactions, imler, Immunity, Innate, Insect Viruses, M3i, RNA Interference, RNA Viruses
@article{huszar_drosophila_2008,
title = {Drosophila viruses and the study of antiviral host-defense},
author = {Tünde Huszar and Jean-Luc Imler},
doi = {10.1016/S0065-3527(08)00406-5},
issn = {0065-3527},
year = {2008},
date = {2008-01-01},
journal = {Advances in Virus Research},
volume = {72},
pages = {227--265},
abstract = {The fruit fly Drosophila melanogaster is a powerful model to study host-pathogen interactions. Most studies so far have focused on extracellular pathogens such as bacteria and fungi. More recently, viruses have come to the front, and RNA interference was shown to play a critical role in the control of viral infections in drosophila. We review here our current knowledge on drosophila viruses. A diverse set of RNA viruses belonging to several families (Rhabdoviridae, Dicistroviridae, Birnaviridae, Reoviridae, Errantiviridae) has been reported in D. melanogaster. By contrast, no DNA virus has been recovered up to now. The drosophila viruses represent powerful tools to study virus-cell interactions in vivo. Analysis of the literature however reveals that for many of them, important gaps exist in our understanding of their replication cycle, genome organization, morphology or pathogenesis. The data obtained in the past few years on antiviral defense mechanisms in drosophila, which point to evolutionary conserved pathways, highlight the potential of the D. melanogaster model to study antiviral innate immunity and to better understand the complex interaction between arthropod-borne viruses and their insect vectors.},
keywords = {Animals, Host-Pathogen Interactions, imler, Immunity, Innate, Insect Viruses, M3i, RNA Interference, RNA Viruses},
pubstate = {published},
tppubtype = {article}
}
2007
Ferrandon Dominique, Imler Jean-Luc, Hetru Charles, Hoffmann Jules A
The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections Journal Article
In: Nat Rev Immunol, vol. 7, pp. 862–74, 2007.
Abstract | BibTeX | Tags: Animals, Bacterial Infections/*immunology/microbiology, Drosophila melanogaster/genetics/*immunology/microbiology, ferrandon, hoffmann, imler, Immunity, M3i, Mycoses/*immunology/microbiology, Natural/genetics, Signal Transduction/genetics/*immunology
@article{ferrandon_drosophila_2007b,
title = {The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections},
author = {Dominique Ferrandon and Jean-Luc Imler and Charles Hetru and Jules A Hoffmann},
year = {2007},
date = {2007-11-01},
journal = {Nat Rev Immunol},
volume = {7},
pages = {862--74},
abstract = {A hallmark of the potent, multifaceted antimicrobial defence of Drosophila melanogaster is the challenge-induced synthesis of several families of antimicrobial peptides by cells in the fat body. The basic mechanisms of recognition of various types of microbial infections by the adult fly are now understood, often in great detail. We have further gained valuable insight into the infection-induced gene reprogramming by nuclear factor-kappaB (NF-kappaB) family members under the dependence of complex intracellular signalling cascades. The striking parallels between the adult fly response and mammalian innate immune defences described below point to a common ancestry and validate the relevance of the fly defence as a paradigm for innate immunity.},
keywords = {Animals, Bacterial Infections/*immunology/microbiology, Drosophila melanogaster/genetics/*immunology/microbiology, ferrandon, hoffmann, imler, Immunity, M3i, Mycoses/*immunology/microbiology, Natural/genetics, Signal Transduction/genetics/*immunology},
pubstate = {published},
tppubtype = {article}
}
Beutler Bruce, Eidenschenk Celine, Crozat Karine, Imler Jean-Luc, Takeuchi Osamu, Hoffmann Jules A, Akira Shizuo
Genetic analysis of resistance to viral infection Journal Article
In: Nature Reviews. Immunology, vol. 7, no. 10, pp. 753–766, 2007, ISSN: 1474-1741.
Abstract | Links | BibTeX | Tags: Animals, Antiviral Agents, Disease Susceptibility, Drug Resistance, Eukaryotic Cells, hoffmann, Humans, imler, Immunity, M3i, Mutation, Viral, Virus Diseases, viruses
@article{beutler_genetic_2007,
title = {Genetic analysis of resistance to viral infection},
author = {Bruce Beutler and Celine Eidenschenk and Karine Crozat and Jean-Luc Imler and Osamu Takeuchi and Jules A Hoffmann and Shizuo Akira},
doi = {10.1038/nri2174},
issn = {1474-1741},
year = {2007},
date = {2007-10-01},
journal = {Nature Reviews. Immunology},
volume = {7},
number = {10},
pages = {753--766},
abstract = {As machines that reprogramme eukaryotic cells to suit their own purposes, viruses present a difficult problem for multicellular hosts, and indeed, have become one of the central pre-occupations of the immune system. Unable to permanently outpace individual viruses in an evolutionary footrace, higher eukaryotes have evolved broadly active mechanisms with which to sense viruses and suppress their proliferation. These mechanisms have recently been elucidated by a combination of forward and reverse genetic methods. Some of these mechanisms are clearly ancient, whereas others are relatively new. All are remarkably adept at discriminating self from non-self, and allow the host to cope with what might seem an impossible predicament.},
keywords = {Animals, Antiviral Agents, Disease Susceptibility, Drug Resistance, Eukaryotic Cells, hoffmann, Humans, imler, Immunity, M3i, Mutation, Viral, Virus Diseases, viruses},
pubstate = {published},
tppubtype = {article}
}
Kwan W H, Boix C, Gougelet N, Fridman W H, Mueller C G
LPS induces rapid IL-10 release by M-CSF-conditioned tolerogenic dendritic cell precursors Journal Article
In: Journal of Leukocyte Biology, vol. 82, no. 0741-5400 (Print), pp. 133–141, 2007.
Abstract | BibTeX | Tags: Activation, APC, Cell Differentiation, COLONY-STIMULATING FACTOR, cytokine, Cytokines, cytology, Dendritic Cells, Differentiation,