Publications
2023
de Faria Isaque J. S., Imler Jean-Luc, Marques João T.
Protocol for the analysis of double-stranded RNAs in virus-infected insect cells using anti-dsRNA antibodies Journal Article
In: STAR Protocols, vol. 4, iss. 1, 2023.
Abstract | Links | BibTeX | Tags: antibody, cell bioloby, Immunology, M3i, Marques, microbiology, Microscopy, Molecular Biology
@article{deFaria2023,
title = {Protocol for the analysis of double-stranded RNAs in virus-infected insect cells using anti-dsRNA antibodies},
author = {Isaque J.S. de Faria and Jean-Luc Imler and João T. Marques},
url = {https://doi.org/10.1016/j.xpro.2022.102033},
doi = {10.1016/j.xpro.2022.102033},
year = {2023},
date = {2023-03-17},
urldate = {2023-03-17},
journal = {STAR Protocols},
volume = {4},
issue = {1},
abstract = {Characterization of double-stranded (ds)RNAs is relevant to the understanding of viral replication and immune sensing. Here, we provide a protocol describing the use of anti-dsRNA antibodies for immunofluorescence and immunoblotting in virus-infected insect cells, which can also be applied to tissues and other organisms. We describe the procedures to prepare insect cells for viral infection, followed by RNA extraction and in vitro production of synthetic dsRNA controls. We then detail the steps for dsRNA detection by immunoblotting and immunofluorescence. For complete details on the use and execution of this protocol, please refer to de Faria et al. (2022).1},
keywords = {antibody, cell bioloby, Immunology, M3i, Marques, microbiology, Microscopy, Molecular Biology},
pubstate = {published},
tppubtype = {article}
}
2021
Prakash Pragya, Roychowdhury-Sinha Arghyashree, Goto Akira
Verloren negatively regulates the expression of IMD pathway dependent antimicrobial peptides in Drosophila Journal Article
In: Scientific Reports, vol. 11, no. 15549, 2021.
Abstract | Links | BibTeX | Tags: bacteria, Biochemistry, DNA, Fungi, Gene Expression, gene regulation, Genetics, hoffmann, Immunochemistry, Immunology, infection, inflammation, Innate immune cells, innate immunity, M3i, microbiology, Molecular Biology, pathogens, RNA, RNAi, Signal Transduction, Transcription
@article{Goto2021,
title = {Verloren negatively regulates the expression of IMD pathway dependent antimicrobial peptides in Drosophila},
author = {Pragya Prakash and Arghyashree Roychowdhury-Sinha and Akira Goto},
url = {https://www.nature.com/articles/s41598-021-94973-0},
doi = {10.1038/s41598-021-94973-0},
year = {2021},
date = {2021-07-30},
journal = {Scientific Reports},
volume = {11},
number = {15549},
abstract = {Drosophila immune deficiency (IMD) pathway is similar to the human tumor necrosis factor receptor (TNFR) signaling pathway and is preferentially activated by Gram-negative bacterial infection. Recent studies highlighted the importance of IMD pathway regulation as it is tightly controlled by numbers of negative regulators at multiple levels. Here, we report a new negative regulator of the IMD pathway, Verloren (Velo). Silencing of Velo led to constitutive expression of the IMD pathway dependent antimicrobial peptides (AMPs), and Escherichia coli stimulation further enhanced the AMP expression. Epistatic analysis indicated that Velo knock-down mediated AMP upregulation is dependent on the canonical members of the IMD pathway. The immune fluorescent study using overexpression constructs revealed that Velo resides both in the nucleus and cytoplasm, but the majority (~ 75%) is localized in the nucleus. We also observed from in vivo analysis that Velo knock-down flies exhibit significant upregulation of the AMP expression and reduced bacterial load. Survival experiments showed that Velo knock-down flies have a short lifespan and are susceptible to the infection of pathogenic Gram-negative bacteria, P. aeruginosa. Taken together, these data suggest that Velo is an additional new negative regulator of the IMD pathway, possibly acting in both the nucleus and cytoplasm.},
keywords = {bacteria, Biochemistry, DNA, Fungi, Gene Expression, gene regulation, Genetics, hoffmann, Immunochemistry, Immunology, infection, inflammation, Innate immune cells, innate immunity, M3i, microbiology, Molecular Biology, pathogens, RNA, RNAi, Signal Transduction, Transcription},
pubstate = {published},
tppubtype = {article}
}
2016
Dietrich Damien, Martin Praxedis, Flacher Vincent, Sun Yu, Jarrossay David, Brembilla Nicolo, Mueller Christopher, Arnett Heather A, Palmer Gaby, Towne Jennifer, Gabay Cem
Interleukin-36 potently stimulates human M2 macrophages, Langerhans cells and keratinocytes to produce pro-inflammatory cytokines Journal Article
In: Cytokine, vol. 84, pp. 88–98, 2016, ISSN: 1096-0023.
Abstract | Links | BibTeX | Tags: agonists, ANTAGONIST, BLOOD, Cells, Cellular, Chemistry, Cultured, cytokine, CYTOKINE PRODUCTION, Cytokines, Dendritic Cells, DERMATOLOGY, Expression, Human, Humans, IL-1, IL-1R1, IL-1ra, IL-36, IL-36R, Immunoassay, Immunology, immunopathology, inflammation, Interleukin, Interleukin-1 Receptor Accessory Protein, Interleukin-1 Type I, KERATINOCYTES, Langerhans Cells, Macrophage, Macrophages, messenger, Molecular Biology, Monocytes, mRNA, Myeloid Cells, pathology, Phenotype, PRODUCTION, PROINFLAMMATORY CYTOKINES, Receptor, receptor antagonist, Receptors, RNA, signaling, Skin, target, Team-Mueller, TONSIL
@article{dietrich_interleukin-36_2016,
title = {Interleukin-36 potently stimulates human M2 macrophages, Langerhans cells and keratinocytes to produce pro-inflammatory cytokines},
author = {Damien Dietrich and Praxedis Martin and Vincent Flacher and Yu Sun and David Jarrossay and Nicolo Brembilla and Christopher Mueller and Heather A Arnett and Gaby Palmer and Jennifer Towne and Cem Gabay},
doi = {10.1016/j.cyto.2016.05.012},
issn = {1096-0023},
year = {2016},
date = {2016-01-01},
journal = {Cytokine},
volume = {84},
pages = {88--98},
abstract = {Interleukin (IL)-36 cytokines belong to the IL-1 family and include three agonists, IL-36 α, β and γ and one inhibitor, IL-36 receptor antagonist (IL-36Ra). IL-36 and IL-1 (α and β) activate similar intracellular pathways via their related heterodimeric receptors, IL-36R/IL-1RAcP and IL-1R1/IL-1RAcP, respectively. However, excessive IL-36 versus IL-1 signaling induces different phenotypes in humans, which may be related to differential expression of their respective receptors. We examined the expression of IL-36R, IL-1R1 and IL-1RAcP mRNA in human peripheral blood, tonsil and skin immune cells by RT-qPCR. Monocyte-derived dendritic cells (MDDC), M0, M1 or M2-polarized macrophages, primary keratinocytes, dermal macrophages and Langerhans cells (LC) were stimulated with IL-1β or IL-36β. Cytokine production was assessed by RT-qPCR and immunoassays. The highest levels of IL-36R mRNA were found in skin-derived keratinocytes, LC, dermal macrophages and dermal CD1a(+) DC. In the blood and in tonsils, IL-36R mRNA was predominantly found in myeloid cells. By contrast, IL-1R1 mRNA was detected in almost all cell types with higher levels in tonsil and skin compared to peripheral blood immune cells. IL-36β was as potent as IL-1β in stimulating M2 macrophages, keratinocytes and LC, less potent than IL-1β in stimulating M0 macrophages and MDDC, and exerted no effects in M1 and dermal macrophages. Levels of IL-1Ra diminished the ability of M2 macrophages to respond to IL-1. Taken together, these data are consistent with the association of excessive IL-36 signaling with an inflammatory skin phenotype and identify human LC and M2 macrophages as new IL-36 target cells.},
keywords = {agonists, ANTAGONIST, BLOOD, Cells, Cellular, Chemistry, Cultured, cytokine, CYTOKINE PRODUCTION, Cytokines, Dendritic Cells, DERMATOLOGY, Expression, Human, Humans, IL-1, IL-1R1, IL-1ra, IL-36, IL-36R, Immunoassay, Immunology, immunopathology, inflammation, Interleukin, Interleukin-1 Receptor Accessory Protein, Interleukin-1 Type I, KERATINOCYTES, Langerhans Cells, Macrophage, Macrophages, messenger, Molecular Biology, Monocytes, mRNA, Myeloid Cells, pathology, Phenotype, PRODUCTION, PROINFLAMMATORY CYTOKINES, Receptor, receptor antagonist, Receptors, RNA, signaling, Skin, target, Team-Mueller, TONSIL},
pubstate = {published},
tppubtype = {article}
}
1990
Hoffmann Danièle, Hoffmann Jules A
Cellular and molecular aspects of insect immunity Journal Article
In: Res. Immunol., vol. 141, no. 9, pp. 895–896, 1990, ISSN: 0923-2494.
BibTeX | Tags: Animals, Cellular, hoffmann, Immunity, insects, M3i, Molecular Biology
@article{hoffmann_cellular_1990,
title = {Cellular and molecular aspects of insect immunity},
author = {Danièle Hoffmann and Jules A Hoffmann},
issn = {0923-2494},
year = {1990},
date = {1990-12-01},
journal = {Res. Immunol.},
volume = {141},
number = {9},
pages = {895--896},
keywords = {Animals, Cellular, hoffmann, Immunity, insects, M3i, Molecular Biology},
pubstate = {published},
tppubtype = {article}
}