Publications
2019
Bordoni Valentina, Reina Giacomo, Orecchioni Marco, Furesi Giulia, Thiele Stefanie, Gardin Chiara, Zavan Barbara, Cuniberti Gianaurelio, Bianco Alberto, Rauner Martina, Delogu Lucia G
Stimulation of bone formation by monocyte-activator functionalized graphene oxide in vivo Journal Article
In: Nanoscale, vol. 11, no. 41, pp. 19408–19421, 2019, ISSN: 2040-3372.
Abstract | Links | BibTeX | Tags: Animals, Biocompatible Materials, Bone Morphogenetic Protein 2, Calcium Phosphates, Cell Differentiation, Cell Survival, Coculture Techniques, Graphite, Humans, I2CT, Inbred C57BL, Male, Mesenchymal Stem Cells, Mice, Monocytes, Oncostatin M, Osteoblasts, Osteogenesis, Signal Transduction, Team-Bianco, Tibia, Wnt Proteins
@article{bordoni_stimulation_2019,
title = {Stimulation of bone formation by monocyte-activator functionalized graphene oxide in vivo},
author = {Valentina Bordoni and Giacomo Reina and Marco Orecchioni and Giulia Furesi and Stefanie Thiele and Chiara Gardin and Barbara Zavan and Gianaurelio Cuniberti and Alberto Bianco and Martina Rauner and Lucia G Delogu},
doi = {10.1039/c9nr03975a},
issn = {2040-3372},
year = {2019},
date = {2019-11-01},
journal = {Nanoscale},
volume = {11},
number = {41},
pages = {19408--19421},
abstract = {Nanosystems are able to enhance bone regeneration, a complex process requiring the mutual interplay between immune and skeletal cells. Activated monocytes can communicate pro-osteogenic signals to mesenchymal stem cells and promote osteogenesis. Thus, the activation of monocytes is a promising strategy to improve bone regeneration. Nanomaterials specifically selected to provoke immune-mediated bone formation are still missing. As a proof of concept, we apply here the intrinsic immune-characteristics of graphene oxide (GO) with the well-recognized osteoinductive capacity of calcium phosphate (CaP) in a biocompatible nanomaterial called maGO-CaP (monocytes activator GO complexed with CaP). In the presence of monocytes, the alkaline phosphatase activity and the expression of osteogenic markers increased. Studying the mechanisms of action, we detected an up-regulation of Wnt and BMP signaling, two key osteogenic pathways. The role of the immune activation was evidenced by the over-production of oncostatin M, a pro-osteogenic factor produced by monocytes. Finally, we tested the pro-osteogenic effects of maGO-CaP in vivo. maGO-CaP injected into the tibia of mice enhanced local bone mass and the bone formation rate. Our study suggests that maGO-CaP can activate monocytes to enhance osteogenesis ex vivo and in vivo.},
keywords = {Animals, Biocompatible Materials, Bone Morphogenetic Protein 2, Calcium Phosphates, Cell Differentiation, Cell Survival, Coculture Techniques, Graphite, Humans, I2CT, Inbred C57BL, Male, Mesenchymal Stem Cells, Mice, Monocytes, Oncostatin M, Osteoblasts, Osteogenesis, Signal Transduction, Team-Bianco, Tibia, Wnt Proteins},
pubstate = {published},
tppubtype = {article}
}
Vargas-Franco Jorge William, Castaneda Beatriz, Gama Andrea, Mueller Christopher G, Heymann Dominique, Rédini Françoise, Lézot Frédéric
In: Biochemical Pharmacology, vol. 168, pp. 133–148, 2019, ISSN: 1873-2968.
Abstract | Links | BibTeX | Tags: Animals, Bone Density Conservation Agents, Bone Development, Craniofacial bone, Gene Knockout Techniques, Growth, Inbred C57BL, Knockout, Long bone, Mice, Newborn, Osteoprotegerin, RANK ligand, RANKL/RANK/OPG, Skull, Team-Mueller, Tibia, Tooth, X-Ray Microtomography, Zoledronic acid
@article{vargas-franco_genetically-achieved_2019,
title = {Genetically-achieved disturbances to the expression levels of TNFSF11 receptors modulate the effects of zoledronic acid on growing mouse skeletons},
author = {Jorge William Vargas-Franco and Beatriz Castaneda and Andrea Gama and Christopher G Mueller and Dominique Heymann and Françoise Rédini and Frédéric Lézot},
doi = {10.1016/j.bcp.2019.06.027},
issn = {1873-2968},
year = {2019},
date = {2019-10-01},
journal = {Biochemical Pharmacology},
volume = {168},
pages = {133--148},
abstract = {Zoledronic acid (ZOL), a nitrogen bisphosphonate (N-BP), is currently used to treat and control pediatric osteolytic diseases. Variations in the intensity of the effects and side effects of N-BPs have been reported with no clear explanations regarding their origins. We wonder if such variations could be associated with different levels of RANKL signaling activity in growing bone during and after the treatment with N-BPs. To answer this question, ZOL was injected into neonate C57BL/6J mice with different genetically-determined RANKL signaling activity levels (Opg+/+textbackslashRankTg-, Opg+/+textbackslashRankTg+, Opg+/-textbackslashRankTg-, Opg+/-textbackslashRankTg+, Opg-/-textbackslashRankTg- and Opg-/-textbackslashRankTg+ mice) following a protocol (4 injections from post-natal day 1 to 7 at the dose of 50 μg/kg) that mimics those used in onco-pediatric patients. At the end of pediatric growth (1 and half months) and at an adult age (10 months), the bone morphometric and mineral parameters were measured using μCT in the tibia and skull for the different mice. A histologic analysis of the dental and periodontal tissues was also performed. At the end of pediatric growth, a delay in long bone and skull bone growth, a blockage of tooth eruption, some molar root alterations and a neoplasia-like structure associated with incisor development were found. Interestingly, the magnitude of these side effects was reduced by Opg deficiency (Opg-/-) but increased by Rank overexpression (RankTg). Analysis of the skeletal phenotype at ten months confirmed respectively the beneficial and harmful effects of Opg deficiency and Rank overexpression. These results validated the hypothesis that the RANKL signaling activity level in the bone microenvironment is implicated in the modulation of the response to ZOL. Further studies will be necessary to understand the underlying molecular mechanisms, which will help decipher the variability in the effects of N-BPs reported in the human population. SIGNIFICANT STATEMENTS: The present study establishes that in mice the RANKL signaling activity level is a major modulator of the effects and side-effects of bisphosphonates on the individual skeleton during growth. However, the modulatory actions are dependent on the ways in which this level of activity is increased. A decrease in OPG expression is beneficial to the skeletal phenotype observed at the end of growth, while RANK overexpression deteriorates it. Far removed from pediatric treatment, in adults, the skeletal phenotypes initially observed at the end of growth for the different levels of RANKL signaling activity were maintained, although significant improvement was associated only with reductions in OPG expression.},
keywords = {Animals, Bone Density Conservation Agents, Bone Development, Craniofacial bone, Gene Knockout Techniques, Growth, Inbred C57BL, Knockout, Long bone, Mice, Newborn, Osteoprotegerin, RANK ligand, RANKL/RANK/OPG, Skull, Team-Mueller, Tibia, Tooth, X-Ray Microtomography, Zoledronic acid},
pubstate = {published},
tppubtype = {article}
}
Schaeffer Evelyne, Sánchez-Fernández Elena M, Gonçalves-Pereira Rita, Flacher Vincent, Lamon Delphine, Duval Monique, Fauny Jean-Daniel, Fernández José M García, Mueller Christopher G, Mellet Carmen Ortiz
In: European Journal of Medicinal Chemistry, vol. 169, pp. 111–120, 2019, ISSN: 1768-3254.
Abstract | Links | BibTeX | Tags: Activation, Acute Disease, Animals, antagonists & inhibitors, CD14, Cells, chemical synthesis, Chemistry, CO-RECEPTOR, Cultured, Dendritic cell, Dendritic Cells, Dose-Response Relationship, Drug, drug effects, drug therapy, Glycolipid, Glycolipids, Human, Humans, Iminosugar, immunopathology, IN VITRO, In vivo, Inbred C57BL, inflammation, Interleukin-6, lipopolysaccharide, Lipopolysaccharides, LPS, Male, Maturation, metabolism, Mice, MICROGLIA, Molecular Structure, mouse, pathology, Pharmacology, PRODUCTION, Receptor, signaling, Structure-Activity Relationship, Sulfone, Sulfoxide, Tail, target, Team-Mueller
@article{schaeffer_sp2-iminosugar_2019,
title = {sp2-Iminosugar glycolipids as inhibitors of lipopolysaccharide-mediated human dendritic cell activation in vitro and of acute inflammation in mice in vivo},
author = {Evelyne Schaeffer and Elena M Sánchez-Fernández and Rita Gonçalves-Pereira and Vincent Flacher and Delphine Lamon and Monique Duval and Jean-Daniel Fauny and José M García Fernández and Christopher G Mueller and Carmen Ortiz Mellet},
doi = {10.1016/j.ejmech.2019.02.078},
issn = {1768-3254},
year = {2019},
date = {2019-05-01},
journal = {European Journal of Medicinal Chemistry},
volume = {169},
pages = {111--120},
abstract = {Glycolipid mimetics consisting of a bicyclic polyhydroxypiperidine-cyclic carbamate core and a pseudoanomeric hydrophobic tail, termed sp2-iminosugar glycolipids (sp2-IGLs), target microglia during neuroinflammatory processes. Here we have synthesized and investigated new variants of sp2-IGLs for their ability to suppress the activation of human monocyte-derived dendritic cells (DCs) by lipopolysaccharide (LPS) signaling through Toll-like receptor 4. We report that the best lead was (1R)-1-dodecylsulfonyl-5N,6O-oxomethylidenenojirimycin (DSO2-ONJ), able to inhibit LPS-induced TNFα production and maturation of DCs. Immunovisualization experiments, using a mannoside glycolipid conjugate (MGC) that also suppress LPS-mediated DC activation as control, evidenced a distinct mode of action for the sp2-IGLs: unlike MGCs, DSO2-ONJ did not elicit internalization of the LPS co-receptor CD14 or induce its co-localization with the Toll-like receptor 4. In a mouse model of LPS-induced acute inflammation, DSO2-ONJ demonstrated anti-inflammatory activity by inhibiting the production of the pro-inflammatory interleukin-6. The ensemble of the data highlights sp2-IGLs as a promising new class of molecules against inflammation by interfering in Toll-like receptor intracellular signaling.},
keywords = {Activation, Acute Disease, Animals, antagonists & inhibitors, CD14, Cells, chemical synthesis, Chemistry, CO-RECEPTOR, Cultured, Dendritic cell, Dendritic Cells, Dose-Response Relationship, Drug, drug effects, drug therapy, Glycolipid, Glycolipids, Human, Humans, Iminosugar, immunopathology, IN VITRO, In vivo, Inbred C57BL, inflammation, Interleukin-6, lipopolysaccharide, Lipopolysaccharides, LPS, Male, Maturation, metabolism, Mice, MICROGLIA, Molecular Structure, mouse, pathology, Pharmacology, PRODUCTION, Receptor, signaling, Structure-Activity Relationship, Sulfone, Sulfoxide, Tail, target, Team-Mueller},
pubstate = {published},
tppubtype = {article}
}
2018
Rodrigues Artur Filipe, Newman Leon, Jasim Dhifaf A, Vacchi Isabella A, Ménard-Moyon Cécilia, Crica Livia E, Bianco Alberto, Kostarelos Kostas, Bussy Cyrill
Immunological impact of graphene oxide sheets in the abdominal cavity is governed by surface reactivity Journal Article
In: Archives of Toxicology, vol. 92, no. 11, pp. 3359–3379, 2018, ISSN: 1432-0738.
Abstract | Links | BibTeX | Tags: 2D Materials, Animals, carbon, Epithelium, Female, graphene oxide, Graphite, I2CT, In vivo, Inbred C57BL, inflammation, Intraperitoneal, Macrophages, Mesothelium, Mice, Nanotubes, Peritoneal, Peritoneal Cavity, Protein coating, Team-Bianco, Tissue Distribution, Toxicity
@article{rodrigues_immunological_2018,
title = {Immunological impact of graphene oxide sheets in the abdominal cavity is governed by surface reactivity},
author = {Artur Filipe Rodrigues and Leon Newman and Dhifaf A Jasim and Isabella A Vacchi and Cécilia Ménard-Moyon and Livia E Crica and Alberto Bianco and Kostas Kostarelos and Cyrill Bussy},
doi = {10.1007/s00204-018-2303-z},
issn = {1432-0738},
year = {2018},
date = {2018-01-01},
journal = {Archives of Toxicology},
volume = {92},
number = {11},
pages = {3359--3379},
abstract = {Graphene oxide (GO) is an oxidised form of graphene that has attracted commercial interest in multiple applications, including inks, printed electronics and spray coatings, which all raise health concerns due to potential creation of inhalable aerosols. Although a number of studies have discussed the toxicity of GO sheets, the in vivo impact of their lateral dimensions is still not clear. Here, we compared the effects of large GO sheets (l-GO, 1-20 µm) with those of small GO sheets (s-GO, textbackslashtextless 1 µm) in terms of mesothelial damage and peritoneal inflammation, after intraperitoneal (i.p.) injection in mice. To benchmark the outcomes, long and rigid multi-walled carbon nanotubes (MWCNTs) that were shown to be associated with asbestos-like pathogenicity on the mesothelium were also tested. Our aim was to assess whether lateral dimensions can be a predictor of inflammogenicity for GO sheets in a similar fashion as length is for MWCNTs. While long MWCNTs dispersed in 0.5% BSA induced a granulomatous response on the diaphragmatic mesothelium and immune cell recruitment to the peritoneal cavity, GO sheets dispersed under similar conditions did not cause any response, regardless of their lateral dimensions. We further interrogated whether tuning the surface reactivity of GO by testing different dispersions (5% dextrose instead of 0.5% BSA) may change the biological outcome. Although the change of dispersion did not alter the impact of GO on the mesothelium (i.e. no granuloma), we observed that, when dispersed in protein-free 5% dextrose solution, s-GO elicited a greater recruitment of monocytic cells to the peritoneal cavity than l-GO, or when dispersed in protein-containing solution. Such recruitment coincided with the greater ability of s-GO to interact in vivo with peritoneal macrophages and was associated with a greater surface reactivity in comparison to l-GO. In conclusion, large dimension was not a determining factor of the immunological impact of GO sheets after i.p. administration. For an equal dose, GO sheets with lateral dimensions similar to the length of long MWCNTs were less pathogenic than the MWCNTs. On the other hand, surface reactivity and the ability of some smaller GO sheets to interact more readily with immune cells seem to be key parameters that can be tuned to improve the safety profile of GO. In particular, the choice of dispersion modality, which affected these two parameters, was found to be of crucial importance in the assessment of GO impact in this model. Overall, these findings are essential for a better understanding of the parameters governing GO toxicity and inflammation, and the rational design of safe GO-based formulations for various applications, including biomedicine.},
keywords = {2D Materials, Animals, carbon, Epithelium, Female, graphene oxide, Graphite, I2CT, In vivo, Inbred C57BL, inflammation, Intraperitoneal, Macrophages, Mesothelium, Mice, Nanotubes, Peritoneal, Peritoneal Cavity, Protein coating, Team-Bianco, Tissue Distribution, Toxicity},
pubstate = {published},
tppubtype = {article}
}
2017
Onder Lucas, Mörbe Urs, Pikor Natalia, Novkovic Mario, Cheng Hung-Wei, Hehlgans Thomas, Pfeffer Klaus, Becher Burkhard, Waisman Ari, Rülicke Thomas, Gommerman Jennifer, Mueller Christopher G, Sawa Shinichiro, Scandella Elke, Ludewig Burkhard
Lymphatic Endothelial Cells Control Initiation of Lymph Node Organogenesis Journal Article
In: Immunity, vol. 47, no. 1, pp. 80–92.e4, 2017, ISSN: 1097-4180.
Abstract | Links | BibTeX | Tags: Animals, Cell Differentiation, Cells, Choristoma, Cultured, Embryo, Endothelial Cells, fibroblastic reticular cells, Inbred C57BL, lymph node organogenesis, Lymph Nodes, lymphatic and blood endothelial cells, lymphoid stromal cells, lymphoid tissue organizer cells, Lymphotoxin beta Receptor, Lysosphingolipid, Mammalian, Mesenchymal Stem Cells, mesenchymal stromal cells, Mice, NF-kappa B, Organogenesis, Receptor Activator of Nuclear Factor-kappa B, Receptors, Signal Transduction, Team-Mueller, transgenic
@article{onder_lymphatic_2017,
title = {Lymphatic Endothelial Cells Control Initiation of Lymph Node Organogenesis},
author = {Lucas Onder and Urs Mörbe and Natalia Pikor and Mario Novkovic and Hung-Wei Cheng and Thomas Hehlgans and Klaus Pfeffer and Burkhard Becher and Ari Waisman and Thomas Rülicke and Jennifer Gommerman and Christopher G Mueller and Shinichiro Sawa and Elke Scandella and Burkhard Ludewig},
doi = {10.1016/j.immuni.2017.05.008},
issn = {1097-4180},
year = {2017},
date = {2017-07-01},
journal = {Immunity},
volume = {47},
number = {1},
pages = {80--92.e4},
abstract = {Lymph nodes (LNs) are strategically situated throughout the body at junctures of the blood vascular and lymphatic systems to direct immune responses against antigens draining from peripheral tissues. The current paradigm describes LN development as a programmed process that is governed through the interaction between mesenchymal lymphoid tissue organizer (LTo) cells and hematopoietic lymphoid tissue inducer (LTi) cells. Using cell-type-specific ablation of key molecules involved in lymphoid organogenesis, we found that initiation of LN development is dependent on LTi-cell-mediated activation of lymphatic endothelial cells (LECs) and that engagement of mesenchymal stromal cells is a succeeding event. LEC activation was mediated mainly by signaling through receptor activator of NF-κB (RANK) and the non-canonical NF-κB pathway and was steered by sphingosine-1-phosphate-receptor-dependent retention of LTi cells in the LN anlage. Finally, the finding that pharmacologically enforced interaction between LTi cells and LECs promotes ectopic LN formation underscores the central LTo function of LECs.},
keywords = {Animals, Cell Differentiation, Cells, Choristoma, Cultured, Embryo, Endothelial Cells, fibroblastic reticular cells, Inbred C57BL, lymph node organogenesis, Lymph Nodes, lymphatic and blood endothelial cells, lymphoid stromal cells, lymphoid tissue organizer cells, Lymphotoxin beta Receptor, Lysosphingolipid, Mammalian, Mesenchymal Stem Cells, mesenchymal stromal cells, Mice, NF-kappa B, Organogenesis, Receptor Activator of Nuclear Factor-kappa B, Receptors, Signal Transduction, Team-Mueller, transgenic},
pubstate = {published},
tppubtype = {article}
}
2016
Chypre M, Seaman J, Cordeiro O G, Willen L, Knoop K A, Buchanan A, Sainson R C, Williams I R, Yagita H, Schneider P, Mueller C G
Characterization and application of two RANK-specific antibodies with different biological activities Journal Article
In: Immunol.Lett., vol. 171, no. 1879-0542 (Electronic), pp. 5–14, 2016.
Abstract | Links | BibTeX | Tags: Activation, Animals, ANTAGONIST, Antibodies, antibody, Antibody Affinity, Apoptosis, Assay, Cell Differentiation, Cell Surface Display Techniques, Cellular, Chemistry, comparison, Dendritic Cells, DERMAL DENDRITIC CELLS, Epithelial Cells, Epithelial microfold cell, Epitopes, Fusion, FUSION PROTEIN, HEK293 Cells, Homeostasis, Human, Humans, immune regulation, Immunization, Immunology, Immunomodulation, immunopathology, In vivo, Inbred C57BL, Intestines, Jurkat Cells, Langerhans cell, Langerhans Cells, Mice, Monoclonal, monoclonal antibody, MONOCLONAL-ANTIBODY, mouse, NF-kappa B, NF-kappaB, pathology, Protein, rank, RANK (TNFRSF11a), Receptor, Receptor Activator of Nuclear Factor-kappa B, Regulation, Secondary, Signal Transduction, signaling, Team-Mueller, therapy
@article{chypre_characterization_2016,
title = {Characterization and application of two RANK-specific antibodies with different biological activities},
author = {M Chypre and J Seaman and O G Cordeiro and L Willen and K A Knoop and A Buchanan and R C Sainson and I R Williams and H Yagita and P Schneider and C G Mueller},
doi = {10.1016/j.imlet.2016.01.003},
year = {2016},
date = {2016-03-01},
journal = {Immunol.Lett.},
volume = {171},
number = {1879-0542 (Electronic)},
pages = {5--14},
abstract = {Antibodies play an important role in therapy and investigative biomedical research. The TNF-family member Receptor Activator of NF-kappaB (RANK) is known for its role in bone homeostasis and is increasingly recognized as a central player in immune regulation and epithelial cell activation. However, the study of RANK biology has been hampered by missing or insufficient characterization of high affinity tools that recognize RANK. Here, we present a careful description and comparison of two antibodies, RANK-02 obtained by phage display (Newa, 2014 [1]) and R12-31 generated by immunization (Kamijo, 2006 [2]). We found that both antibodies recognized mouse RANK with high affinity, while RANK-02 and R12-31 recognized human RANK with high and lower affinities, respectively. Using a cell apoptosis assay based on stimulation of a RANK:Fas fusion protein, and a cellular NF-kappaB signaling assay, we showed that R12-31 was agonist for both species. R12-31 interfered little or not at all with the binding of RANKL to RANK, in contrast to RANK-02 that efficiently prevented this interaction. Depending on the assay and species, RANK-02 was either a weak agonist or a partial antagonist of RANK. Both antibodies recognized human Langerhans cells, previously shown to express RANK, while dermal dendritic cells were poorly labeled. In vivo R12-31 agonist activity was demonstrated by its ability to induce the formation of intestinal villous microfold cells in mice. This characterization of two monoclonal antibodies should now allow better evaluation of their application as therapeutic reagents and investigative tools},
keywords = {Activation, Animals, ANTAGONIST, Antibodies, antibody, Antibody Affinity, Apoptosis, Assay, Cell Differentiation, Cell Surface Display Techniques, Cellular, Chemistry, comparison, Dendritic Cells, DERMAL DENDRITIC CELLS, Epithelial Cells, Epithelial microfold cell, Epitopes, Fusion, FUSION PROTEIN, HEK293 Cells, Homeostasis, Human, Humans, immune regulation, Immunization, Immunology, Immunomodulation, immunopathology, In vivo, Inbred C57BL, Intestines, Jurkat Cells, Langerhans cell, Langerhans Cells, Mice, Monoclonal, monoclonal antibody, MONOCLONAL-ANTIBODY, mouse, NF-kappa B, NF-kappaB, pathology, Protein, rank, RANK (TNFRSF11a), Receptor, Receptor Activator of Nuclear Factor-kappa B, Regulation, Secondary, Signal Transduction, signaling, Team-Mueller, therapy},
pubstate = {published},
tppubtype = {article}
}
Cordeiro Olga G, Chypre Mélanie, Brouard Nathalie, Rauber Simon, Alloush Farouk, Romera-Hernandez Monica, Bénézech Cécile, Li Zhi, Eckly Anita, Coles Mark C, Rot Antal, Yagita Hideo, Léon Catherine, Ludewig Burkhard, Cupedo Tom, Lanza François, Mueller Christopher G
Integrin-Alpha IIb Identifies Murine Lymph Node Lymphatic Endothelial Cells Responsive to RANKL Journal Article
In: PloS One, vol. 11, no. 3, pp. e0151848, 2016, ISSN: 1932-6203.
Abstract | Links | BibTeX | Tags: Activation, Animals, Cells, Cultured, Endothelial Cells, ENDOTHELIAL-CELLS, Expression, Fibronectins, Immunization, Immunology, immunopathology, Inbred C57BL, infection, ligand, LYMPH, LYMPH NODE, Lymph Nodes, lymphoid organs, Lymphotoxin, Lymphotoxin-beta, Mice, murine, NF-kappaB, Platelet Membrane Glycoprotein IIb, PLATELETS, PROGENITORS, rank, RANK ligand, Receptor, Secondary, Signal Transduction, signaling, SINUS, Team-Mueller
@article{cordeiro_integrin-alpha_2016,
title = {Integrin-Alpha IIb Identifies Murine Lymph Node Lymphatic Endothelial Cells Responsive to RANKL},
author = {Olga G Cordeiro and Mélanie Chypre and Nathalie Brouard and Simon Rauber and Farouk Alloush and Monica Romera-Hernandez and Cécile Bénézech and Zhi Li and Anita Eckly and Mark C Coles and Antal Rot and Hideo Yagita and Catherine Léon and Burkhard Ludewig and Tom Cupedo and François Lanza and Christopher G Mueller},
doi = {10.1371/journal.pone.0151848},
issn = {1932-6203},
year = {2016},
date = {2016-01-01},
journal = {PloS One},
volume = {11},
number = {3},
pages = {e0151848},
abstract = {Microenvironment and activation signals likely imprint heterogeneity in the lymphatic endothelial cell (LEC) population. Particularly LECs of secondary lymphoid organs are exposed to different cell types and immune stimuli. However, our understanding of the nature of LEC activation signals and their cell source within the secondary lymphoid organ in the steady state remains incomplete. Here we show that integrin alpha 2b (ITGA2b), known to be carried by platelets, megakaryocytes and hematopoietic progenitors, is expressed by a lymph node subset of LECs, residing in medullary, cortical and subcapsular sinuses. In the subcapsular sinus, the floor but not the ceiling layer expresses the integrin, being excluded from ACKR4+ LECs but overlapping with MAdCAM-1 expression. ITGA2b expression increases in response to immunization, raising the possibility that heterogeneous ITGA2b levels reflect variation in exposure to activation signals. We show that alterations of the level of receptor activator of NF-κB ligand (RANKL), by overexpression, neutralization or deletion from stromal marginal reticular cells, affected the proportion of ITGA2b+ LECs. Lymph node LECs but not peripheral LECs express RANK. In addition, we found that lymphotoxin-β receptor signaling likewise regulated the proportion of ITGA2b+ LECs. These findings demonstrate that stromal reticular cells activate LECs via RANKL and support the action of hematopoietic cell-derived lymphotoxin.},
keywords = {Activation, Animals, Cells, Cultured, Endothelial Cells, ENDOTHELIAL-CELLS, Expression, Fibronectins, Immunization, Immunology, immunopathology, Inbred C57BL, infection, ligand, LYMPH, LYMPH NODE, Lymph Nodes, lymphoid organs, Lymphotoxin, Lymphotoxin-beta, Mice, murine, NF-kappaB, Platelet Membrane Glycoprotein IIb, PLATELETS, PROGENITORS, rank, RANK ligand, Receptor, Secondary, Signal Transduction, signaling, SINUS, Team-Mueller},
pubstate = {published},
tppubtype = {article}
}
2015
Mairhofer David G, Ortner Daniela, Tripp Christoph H, Schaffenrath Sandra, Fleming Viktor, Heger Lukas, Komenda Kerstin, Reider Daniela, Dudziak Diana, Chen Suzie, Becker Jürgen C, Flacher Vincent, Stoitzner Patrizia
Impaired gp100-Specific CD8(+) Ŧ-Cell Responses in the Presence of Myeloid-Derived Suppressor Cells in a Spontaneous Mouse Melanoma Model Journal Article
In: The Journal of Investigative Dermatology, vol. 135, no. 11, pp. 2785–2793, 2015, ISSN: 1523-1747.
Abstract | Links | BibTeX | Tags: Analysis of Variance, Animal, Animals, Antigen, cancer, CARCINOGENESIS, CD8-Positive T-Lymphocytes, Cell Proliferation, Cultured, DERMATOLOGY, development, disease, Disease Models, Experimental, GLYCOPROTEIN, gp100 Melanoma Antigen, Growth, Human, Humans, Immunity, Immunologic, IN VITRO, Inbred C57BL, iNOS, Leukocytes, LYMPH, LYMPH NODE, Lymph Nodes, Lymphocyte Activation, MELANOCYTES, Melanoma, Mice, mouse, murine, NITRIC OXIDE, nitric oxide synthase, Phenotype, Proliferation, Random Allocation, Receptor, Regulatory, RESPONSES, Skin, SUBSETS, Suppressor Factors, T CELLS, T-CELLS, T-Lymphocytes, Team-Mueller, Transforming Growth Factor beta, transgenic, tumor, Tumor Cells, tumor immunity
@article{mairhofer_impaired_2015,
title = {Impaired gp100-Specific CD8(+) Ŧ-Cell Responses in the Presence of Myeloid-Derived Suppressor Cells in a Spontaneous Mouse Melanoma Model},
author = {David G Mairhofer and Daniela Ortner and Christoph H Tripp and Sandra Schaffenrath and Viktor Fleming and Lukas Heger and Kerstin Komenda and Daniela Reider and Diana Dudziak and Suzie Chen and Jürgen C Becker and Vincent Flacher and Patrizia Stoitzner},
doi = {10.1038/jid.2015.241},
issn = {1523-1747},
year = {2015},
date = {2015-11-01},
journal = {The Journal of Investigative Dermatology},
volume = {135},
number = {11},
pages = {2785--2793},
abstract = {Murine tumor models that closely reflect human diseases are important tools to investigate carcinogenesis and tumor immunity. The transgenic (tg) mouse strain tg(Grm1)EPv develops spontaneous melanoma due to ectopic overexpression of the metabotropic glutamate receptor 1 (Grm1) in melanocytes. In the present study, we characterized the immune status and functional properties of immune cells in tumor-bearing mice. Melanoma development was accompanied by a reduction in the percentages of CD4(+) T cells including regulatory T cells (Tregs) in CD45(+) leukocytes present in tumor tissue and draining lymph nodes (LNs). In contrast, the percentages of CD8(+) T cells were unchanged, and these cells showed an activated phenotype in tumor mice. Endogenous melanoma-associated antigen glycoprotein 100 (gp100)-specific CD8(+) T cells were not deleted during tumor development, as revealed by pentamer staining in the skin and draining LNs. They, however, were unresponsive to ex vivo gp100-peptide stimulation in late-stage tumor mice. Interestingly, immunosuppressive myeloid-derived suppressor cells (MDSCs) were recruited to tumor tissue with a preferential accumulation of granulocytic MDSC (grMDSCs) over monocytic MDSC (moMDSCs). Both subsets produced Arginase-1, inducible nitric oxide synthase (iNOS), and transforming growth factor-β and suppressed T-cell proliferation in vitro. In this work, we describe the immune status of a spontaneous melanoma mouse model that provides an interesting tool to develop future immunotherapeutical strategies.},
keywords = {Analysis of Variance, Animal, Animals, Antigen, cancer, CARCINOGENESIS, CD8-Positive T-Lymphocytes, Cell Proliferation, Cultured, DERMATOLOGY, development, disease, Disease Models, Experimental, GLYCOPROTEIN, gp100 Melanoma Antigen, Growth, Human, Humans, Immunity, Immunologic, IN VITRO, Inbred C57BL, iNOS, Leukocytes, LYMPH, LYMPH NODE, Lymph Nodes, Lymphocyte Activation, MELANOCYTES, Melanoma, Mice, mouse, murine, NITRIC OXIDE, nitric oxide synthase, Phenotype, Proliferation, Random Allocation, Receptor, Regulatory, RESPONSES, Skin, SUBSETS, Suppressor Factors, T CELLS, T-CELLS, T-Lymphocytes, Team-Mueller, Transforming Growth Factor beta, transgenic, tumor, Tumor Cells, tumor immunity},
pubstate = {published},
tppubtype = {article}
}
Haid Bernhard, Schlögl David E, Hermann Martin, Tripp Christoph H, Stoitzner Patrizia, Romani Nikolaus, Flacher Vincent
Langerhans cells in the sebaceous gland of the murine skin Journal Article
In: Experimental Dermatology, vol. 24, no. 11, pp. 899–901, 2015, ISSN: 1600-0625.
Links | BibTeX | Tags: Animals, Dendritic Cells, DERMATOLOGY, DERMIS, Epidermis, Inbred BALB C, Inbred C57BL, Langerhans Cells, Langerin, Letter, Mice, murine, pilosebaceous unit, sebaceous gland, Sebaceous Glands, Skin, Team-Mueller
@article{haid_langerhans_2015,
title = {Langerhans cells in the sebaceous gland of the murine skin},
author = {Bernhard Haid and David E Schlögl and Martin Hermann and Christoph H Tripp and Patrizia Stoitzner and Nikolaus Romani and Vincent Flacher},
doi = {10.1111/exd.12803},
issn = {1600-0625},
year = {2015},
date = {2015-11-01},
journal = {Experimental Dermatology},
volume = {24},
number = {11},
pages = {899--901},
keywords = {Animals, Dendritic Cells, DERMATOLOGY, DERMIS, Epidermis, Inbred BALB C, Inbred C57BL, Langerhans Cells, Langerin, Letter, Mice, murine, pilosebaceous unit, sebaceous gland, Sebaceous Glands, Skin, Team-Mueller},
pubstate = {published},
tppubtype = {article}
}
Lézot Frédéric, Chesneau Julie, Navet Benjamin, Gobin Bérengère, Amiaud Jérome, Choi YongWon, Yagita Hideo, Castaneda Beatriz, Berdal Ariane, Mueller Christopher G, Rédini Françoise, Heymann Dominique
In: Bone, vol. 73, pp. 51–59, 2015, ISSN: 1873-2763.
Abstract | Links | BibTeX | Tags: Animals, Antibodies, Bone Density Conservation Agents, Bone Development, Bone resorption, Diphosphonates, Female, Imidazoles, Inbred C57BL, Mice, Newborn, Pregnancy, RANK ligand, RANKL, Side effect, Skeleton growth, Team-Mueller, Tooth Eruption, Zoledronic acid
@article{lezot_skeletal_2015,
title = {Skeletal consequences of RANKL-blocking antibody (IK22-5) injections during growth: mouse strain disparities and synergic effect with zoledronic acid},
author = {Frédéric Lézot and Julie Chesneau and Benjamin Navet and Bérengère Gobin and Jérome Amiaud and YongWon Choi and Hideo Yagita and Beatriz Castaneda and Ariane Berdal and Christopher G Mueller and Françoise Rédini and Dominique Heymann},
doi = {10.1016/j.bone.2014.12.011},
issn = {1873-2763},
year = {2015},
date = {2015-01-01},
journal = {Bone},
volume = {73},
pages = {51--59},
abstract = {High doses of bone resorption inhibitors are currently under evaluation in pediatric oncology. Previous works have evidenced transient arrest in long bone and skull bone growth and tooth eruption blockage when mice were treated with zoledronic acid (ZOL). The question of potential similar effects with a RANKL-blocking antibody (IK22.5) was raised. Sensitivity disparities in these inhibitors between mouse strains and synergic effects of zoledronic acid and a RANKL-blocking antibody were subsidiary questions. In order to answer these questions, newborn C57BL/6J and CD1 mice were injected every two or three days (4 injections in total so 7 or 10 days of treatment length) with high doses of a RANKL-blocking antibody. The consequences on the tibia, craniofacial bones and teeth were analyzed by μCT and histology at the end of the treatment and one, two and three months later. The results obtained showed that RANKL-blocking antibody injections induced a transient arrest of tibia and skull bone growth and an irreversible blockage of tooth eruption in C57BL/6J mice. In CD1 mice, tooth eruption defects were also present but only at much higher doses. Similar mouse strain differences were obtained with zoledronic acid. Finally, a synergic effect of the two inhibitors was evidenced. In conclusion as previously observed for bisphosphonates (ZOL), a RANKL-blocking antibody induced a transient arrest in long bone and skull bone growth and a blockage of tooth eruption with however disparities between mouse strains with regard to this last effect. A synergic effect of both bone resorption inhibitors was also demonstrated.},
keywords = {Animals, Antibodies, Bone Density Conservation Agents, Bone Development, Bone resorption, Diphosphonates, Female, Imidazoles, Inbred C57BL, Mice, Newborn, Pregnancy, RANK ligand, RANKL, Side effect, Skeleton growth, Team-Mueller, Tooth Eruption, Zoledronic acid},
pubstate = {published},
tppubtype = {article}
}
2014
Flacher Vincent, Tripp Christoph H, Mairhofer David G, Steinman Ralph M, Stoitzner Patrizia, Idoyaga Juliana, Romani Nikolaus
Murine Langerin+ dermal dendritic cells prime CD8+ Ŧ cells while Langerhans cells induce cross-tolerance Journal Article
In: EMBO molecular medicine, vol. 6, no. 9, pp. 1191–1204, 2014, ISSN: 1757-4684.
Abstract | Links | BibTeX | Tags: agonists, Animals, Antibodies, antibody, Antigen, Antigen Presentation, Antigens, C-Type, C-type lectin, cancer, CD70, CD8-Positive T-Lymphocytes, CD8+ T cells, CD8+ T‐cell responses, Cellular, CROSS-PRESENTATION, Cross-Priming, Cytotoxicity, Dendritic Cells, DERMAL DENDRITIC CELLS, DERMATOLOGY, disease, imiquimod, Immunization, IMMUNOGENICITY, Immunologic Memory, Immunological, Immunology, In vivo, Inbred C57BL, INDUCTION, Intradermal, Langerhans Cells, LECTIN, Lectins, Mannose-Binding Lectins, Maturation, Mice, Models, murine, OVALBUMIN, physiology, priming, RESPONSES, Skin, Surface, T CELLS, T-CELLS, Team-Mueller, tolerance, Vaccination, vaccine, Vaccines
@article{flacher_murine_2014,
title = {Murine Langerin+ dermal dendritic cells prime CD8+ Ŧ cells while Langerhans cells induce cross-tolerance},
author = {Vincent Flacher and Christoph H Tripp and David G Mairhofer and Ralph M Steinman and Patrizia Stoitzner and Juliana Idoyaga and Nikolaus Romani},
doi = {10.15252/emmm.201303283},
issn = {1757-4684},
year = {2014},
date = {2014-09-01},
journal = {EMBO molecular medicine},
volume = {6},
number = {9},
pages = {1191--1204},
abstract = {Skin dendritic cells (DCs) control the immunogenicity of cutaneously administered vaccines. Antigens targeted to DCs via the C-type lectin Langerin/CD207 are cross-presented to CD8(+) T cells in vivo. We investigated the relative roles of Langerhans cells (LCs) and Langerin(+) dermal DCs (dDCs) in different vaccination settings. Poly(I:C) and anti-CD40 agonist antibody promoted cytotoxic responses upon intradermal immunization with ovalbumin (OVA)-coupled anti-Langerin antibodies (Langerin/OVA). This correlated with CD70 upregulation in Langerin(+) dDCs, but not LCs. In chimeric mice where Langerin targeting was restricted to dDCs, CD8(+) T-cell memory was enhanced. Conversely, providing Langerin/OVA exclusively to LCs failed to prime cytotoxicity, despite initial antigen cross-presentation to CD8(+) T cells. Langerin/OVA combined with imiquimod could not prime CD8(+) T cells and resulted in poor cytotoxicity in subsequent responses. This tolerance induction required targeting and maturation of LCs. Altogether, Langerin(+) dDCs prime long-lasting cytotoxic responses, while cross-presentation by LCs negatively influences CD8(+) T-cell priming. Moreover, this highlights that DCs exposed to TLR agonists can still induce tolerance and supports the existence of qualitatively different DC maturation programs.},
keywords = {agonists, Animals, Antibodies, antibody, Antigen, Antigen Presentation, Antigens, C-Type, C-type lectin, cancer, CD70, CD8-Positive T-Lymphocytes, CD8+ T cells, CD8+ T‐cell responses, Cellular, CROSS-PRESENTATION, Cross-Priming, Cytotoxicity, Dendritic Cells, DERMAL DENDRITIC CELLS, DERMATOLOGY, disease, imiquimod, Immunization, IMMUNOGENICITY, Immunologic Memory, Immunological, Immunology, In vivo, Inbred C57BL, INDUCTION, Intradermal, Langerhans Cells, LECTIN, Lectins, Mannose-Binding Lectins, Maturation, Mice, Models, murine, OVALBUMIN, physiology, priming, RESPONSES, Skin, Surface, T CELLS, T-CELLS, Team-Mueller, tolerance, Vaccination, vaccine, Vaccines},
pubstate = {published},
tppubtype = {article}
}
Voisin Benjamin, Mairhofer David Gabriel, Chen Suzie, Stoitzner Patrizia, Mueller Christopher George, Flacher Vincent
Anatomical distribution analysis reveals lack of Langerin+ dermal dendritic cells in footpads and tail of C57BL/6 mice Journal Article
In: Experimental Dermatology, vol. 23, no. 5, pp. 354–356, 2014, ISSN: 1600-0625.
Abstract | Links | BibTeX | Tags: Analysis, Animals, Antigen, Antigens, C-Type, CD, CD11c Antigen, Cell Adhesion Molecules, Dendritic Cells, DERMAL DENDRITIC CELLS, Epithelial Cell Adhesion Molecule, footpad skin, function, Hindlimb, immunopathology, Inbred BALB C, Inbred C57BL, Inbred CBA, inflammation, Integrin alpha Chains, Langerhans Cells, Lectins, Letter, Leukocyte Common Antigens, LYMPH, LYMPH NODE, Lymph Nodes, Mannose-Binding Lectins, Mice, mouse, Neoplasm, Skin, skin-draining lymph nodes, Surface, T CELLS, T-CELLS, Tail, tail skin, Team-Mueller
@article{voisin_anatomical_2014,
title = {Anatomical distribution analysis reveals lack of Langerin+ dermal dendritic cells in footpads and tail of C57BL/6 mice},
author = {Benjamin Voisin and David Gabriel Mairhofer and Suzie Chen and Patrizia Stoitzner and Christopher George Mueller and Vincent Flacher},
doi = {10.1111/exd.12373},
issn = {1600-0625},
year = {2014},
date = {2014-01-01},
journal = {Experimental Dermatology},
volume = {23},
number = {5},
pages = {354--356},
abstract = {Epidermal Langerhans cells (LCs) and dermal dendritic cells (dDCs) capture cutaneous antigens and present them to T-cells in lymph nodes (LNs). The function of LCs and Langerin+ dDCs was extensively studied in the mouse, but their anatomical repartition is unknown. Here, we found LCs in back skin, footpads and tail skin of C57BL/6, BALB/c, 129/Sv and CBA/J mice. Langerin+ dDCs were readily observed in back skin of all strains, but only in footpads and tail of BALB/c and CBA/J mice. Similarly, while LCs were equally present in all LNs and strains, Langerin+ dDCs were found in popliteal LNs (draining footpads) only in BALB/c and CBA/J mice. The sciatic LNs, which we identified as the major tail-draining lymphoid organ, were devoid of Langerin+ dDCs in all strains. Thus, functionally different DCs reside in different skin areas, with variations among mouse strains, implying a potential impact on the cutaneous immune reaction.},
keywords = {Analysis, Animals, Antigen, Antigens, C-Type, CD, CD11c Antigen, Cell Adhesion Molecules, Dendritic Cells, DERMAL DENDRITIC CELLS, Epithelial Cell Adhesion Molecule, footpad skin, function, Hindlimb, immunopathology, Inbred BALB C, Inbred C57BL, Inbred CBA, inflammation, Integrin alpha Chains, Langerhans Cells, Lectins, Letter, Leukocyte Common Antigens, LYMPH, LYMPH NODE, Lymph Nodes, Mannose-Binding Lectins, Mice, mouse, Neoplasm, Skin, skin-draining lymph nodes, Surface, T CELLS, T-CELLS, Tail, tail skin, Team-Mueller},
pubstate = {published},
tppubtype = {article}
}
2012
Flacher V, Tripp C H, Haid B, Kissenpfennig A, Malissen B, Stoitzner P, Idoyaga J, Romani N
Skin langerin+ dendritic cells transport intradermally injected anti-DEC-205 antibodies but are not essential for subsequent cytotoxic CD8+ Ŧ cell responses Journal Article
In: Journal of Immunology, vol. 188, no. 1550-6606 (Electronic), pp. 2146–2155, 2012.
Abstract | BibTeX | Tags: administration & dosage, Animals, Antibodies, antibody, Antigen, Antigens, Biosynthesis, C-Type, C-type lectin, CD, Cell Surface, Comparative Study, Cytotoxic, Dendritic Cells, DERMATOLOGY, Gene Knock-In Techniques, Genetics, imiquimod, immune response, IMMUNE-RESPONSES, Immunization, Immunology, in situ, In vivo, Inbred BALB C, Inbred C57BL, INDUCTION, inflammation, Inflammation Mediators, Injections, Intradermal, knock-in, Langerhans Cells, LECTIN, Lectins, LYMPH, LYMPH NODE, Lymph Nodes, LYMPHATIC VESSEL, Lymphatic Vessels, mAb, Mannose-Binding Lectins, MEDIATOR, metabolism, Mice, Minor Histocompatibility Antigens, mouse, murine, Organ Culture Techniques, Ovum, pathology, physiology, Protein, Protein Transport, Rats, Receptor, Receptors, RESPONSES, Skin, SUBSETS, Surface, T-Lymphocytes, target, Team-Mueller, TLR7, transgenic
@article{flacher_skin_2012,
title = {Skin langerin+ dendritic cells transport intradermally injected anti-DEC-205 antibodies but are not essential for subsequent cytotoxic CD8+ Ŧ cell responses},
author = {V Flacher and C H Tripp and B Haid and A Kissenpfennig and B Malissen and P Stoitzner and J Idoyaga and N Romani},
year = {2012},
date = {2012-03-01},
journal = {Journal of Immunology},
volume = {188},
number = {1550-6606 (Electronic)},
pages = {2146--2155},
abstract = {Incorporation of Ags by dendritic cells (DCs) increases when Ags are targeted to endocytic receptors by mAbs. We have previously demonstrated in the mouse that mAbs against C-type lectins administered intradermally are taken up by epidermal Langerhans cells (LCs), dermal Langerin(neg) DCs, and dermal Langerin(+) DCs in situ. However, the relative contribution of these skin DC subsets to the induction of immune responses after Ag targeting has not been addressed in vivo. We show in this study that murine epidermal LCs and dermal DCs transport intradermally injected mAbs against the lectin receptor DEC-205/CD205 in vivo. Skin DCs targeted in situ with mAbs migrated through lymphatic vessels in steady state and inflammation. In the skin-draining lymph nodes, targeting mAbs were found in resident CD8alpha(+) DCs and in migrating skin DCs. More than 70% of targeted DCs expressed Langerin, including dermal Langerin(+) DCs and LCs. Numbers of targeted skin DCs in the nodes increased 2-3-fold when skin was topically inflamed by the TLR7 agonist imiquimod. Complete removal of the site where OVA-coupled anti-DEC-205 had been injected decreased endogenous cytotoxic responses against OVA peptide-loaded target cells by 40-50%. Surprisingly, selective ablation of all Langerin(+) skin DCs in Langerin-DTR knock-in mice did not affect such responses independently of the adjuvant chosen. Thus, in cutaneous immunization strategies where Ag is targeted to DCs, Langerin(+) skin DCs play a major role in transport of anti-DEC-205 mAb, although Langerin(neg) dermal DCs and CD8alpha(+) DCs are sufficient to subsequent CD8(+) T cell responses},
keywords = {administration & dosage, Animals, Antibodies, antibody, Antigen, Antigens, Biosynthesis, C-Type, C-type lectin, CD, Cell Surface, Comparative Study, Cytotoxic, Dendritic Cells, DERMATOLOGY, Gene Knock-In Techniques, Genetics, imiquimod, immune response, IMMUNE-RESPONSES, Immunization, Immunology, in situ, In vivo, Inbred BALB C, Inbred C57BL, INDUCTION, inflammation, Inflammation Mediators, Injections, Intradermal, knock-in, Langerhans Cells, LECTIN, Lectins, LYMPH, LYMPH NODE, Lymph Nodes, LYMPHATIC VESSEL, Lymphatic Vessels, mAb, Mannose-Binding Lectins, MEDIATOR, metabolism, Mice, Minor Histocompatibility Antigens, mouse, murine, Organ Culture Techniques, Ovum, pathology, physiology, Protein, Protein Transport, Rats, Receptor, Receptors, RESPONSES, Skin, SUBSETS, Surface, T-Lymphocytes, target, Team-Mueller, TLR7, transgenic},
pubstate = {published},
tppubtype = {article}
}
2011
Eleftherianos Ioannis, Won Sungyong, Chtarbanova Stanislava, Squiban Barbara, Ocorr Karen, Bodmer Rolf, Beutler Bruce, Hoffmann Jules A, Imler Jean-Luc
ATP-sensitive potassium channel (K(ATP))-dependent regulation of cardiotropic viral infections Journal Article
In: Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 29, pp. 12024–12029, 2011, ISSN: 1091-6490.
Abstract | Links | BibTeX | Tags: Animals, Heart, HeLa Cells, hoffmann, Humans, imler, Immunity, Immunoblotting, Inbred C57BL, Innate, KATP Channels, M3i, Mice, Nodaviridae, Pinacidil, Reverse Transcriptase Polymerase Chain Reaction, RNA Interference, Tolbutamide, Viral Load, Viremia
@article{eleftherianos_atp-sensitive_2011,
title = {ATP-sensitive potassium channel (K(ATP))-dependent regulation of cardiotropic viral infections},
author = {Ioannis Eleftherianos and Sungyong Won and Stanislava Chtarbanova and Barbara Squiban and Karen Ocorr and Rolf Bodmer and Bruce Beutler and Jules A Hoffmann and Jean-Luc Imler},
doi = {10.1073/pnas.1108926108},
issn = {1091-6490},
year = {2011},
date = {2011-07-01},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
volume = {108},
number = {29},
pages = {12024--12029},
abstract = {The effects of the cellular environment on innate immunity remain poorly characterized. Here, we show that in Drosophila ATP-sensitive potassium channels (K(ATP)) mediate resistance to a cardiotropic RNA virus, Flock House virus (FHV). FHV viral load in the heart rapidly increases in K(ATP) mutant flies, leading to increased viremia and accelerated death. The effect of K(ATP) channels is dependent on the RNA interference genes Dcr-2, AGO2, and r2d2, indicating that an activity associated with this potassium channel participates in this antiviral pathway in Drosophila. Flies treated with the K(ATP) agonist drug pinacidil are protected against FHV infection, thus demonstrating the importance of this regulation of innate immunity by the cellular environment in the heart. In mice, the Coxsackievirus B3 replicates to higher titers in the hearts of mayday mutant animals, which are deficient in the Kir6.1 subunit of K(ATP) channels, than in controls. Together, our data suggest that K(ATP) channel deregulation can have a critical impact on innate antiviral immunity in the heart.},
keywords = {Animals, Heart, HeLa Cells, hoffmann, Humans, imler, Immunity, Immunoblotting, Inbred C57BL, Innate, KATP Channels, M3i, Mice, Nodaviridae, Pinacidil, Reverse Transcriptase Polymerase Chain Reaction, RNA Interference, Tolbutamide, Viral Load, Viremia},
pubstate = {published},
tppubtype = {article}
}
Al-Jamal Khuloud T, Gherardini Lisa, Bardi Giuseppe, Nunes Antonio, Guo Chang, Bussy Cyrill, Herrero Antonia M, Bianco Alberto, Prato Maurizio, Kostarelos Kostas, Pizzorusso Tommaso
Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing Journal Article
In: Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 27, pp. 10952–10957, 2011, ISSN: 1091-6490.
Abstract | Links | BibTeX | Tags: Animals, Apoptosis, Base Sequence, Brain Ischemia, carbon, Caspase 3, Caspase Inhibitors, Cell Line, Cells, Cultured, Electron, Endothelin-1, Female, Genetic Therapy, I2CT, Inbred C57BL, Mice, Microscopy, Nanomedicine, Nanotubes, Neurons, Psychomotor Performance, Rats, RNA, RNA Interference, Small Interfering, Sprague-Dawley, Team-Bianco, Transmission
@article{al-jamal_functional_2011,
title = {Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing},
author = {Khuloud T Al-Jamal and Lisa Gherardini and Giuseppe Bardi and Antonio Nunes and Chang Guo and Cyrill Bussy and Antonia M Herrero and Alberto Bianco and Maurizio Prato and Kostas Kostarelos and Tommaso Pizzorusso},
doi = {10.1073/pnas.1100930108},
issn = {1091-6490},
year = {2011},
date = {2011-07-01},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
volume = {108},
number = {27},
pages = {10952--10957},
abstract = {Stroke is the second cause of death worldwide with ischemic stroke accounting for 80% of all stroke insults. Caspase-3 activation contributes to brain tissue loss and downstream biochemical events that lead to programmed cell death after traumatic brain injury. Alleviation of symptoms following ischemic neuronal injury can be potentially achieved by either genetic disruption or pharmacological inhibition of caspases. Here, we studied whether silencing of Caspase-3 using carbon nanotube-mediated in vivo RNA interference (RNAi) could offer a therapeutic opportunity against stroke. Effective delivery of siRNA directly to the CNS has been shown to normalize phenotypes in animal models of several neurological diseases. It is shown here that peri-lesional stereotactic administration of a Caspase-3 siRNA (siCas 3) delivered by functionalized carbon nanotubes (f-CNT) reduced neurodegeneration and promoted functional preservation before and after focal ischemic damage of the rodent motor cortex using an endothelin-1 induced stroke model. These observations illustrate the opportunity offered by carbon nanotube-mediated siRNA delivery and gene silencing of neuronal tissue applicable to a variety of different neuropathological conditions where intervention at well localized brain foci may offer therapeutic and functional benefits.},
keywords = {Animals, Apoptosis, Base Sequence, Brain Ischemia, carbon, Caspase 3, Caspase Inhibitors, Cell Line, Cells, Cultured, Electron, Endothelin-1, Female, Genetic Therapy, I2CT, Inbred C57BL, Mice, Microscopy, Nanomedicine, Nanotubes, Neurons, Psychomotor Performance, Rats, RNA, RNA Interference, Small Interfering, Sprague-Dawley, Team-Bianco, Transmission},
pubstate = {published},
tppubtype = {article}
}
Duheron V, Hess E, Duval M, Decossas M, Castaneda B, Klopper J E, Amoasii L, Barbaroux J B, Williams I R, Yagita H, Penninger J, Choi Y, Lezot F, Groves R, Paus R, Mueller C G
Receptor activator of NF-kappaB (RANK) stimulates the proliferation of epithelial cells of the epidermo-pilosebaceous unit Journal Article
In: Proc.Natl.Acad.Sci.U.S.A, vol. 108, no. 1091-6490 (Electronic), pp. 5342–5347, 2011.
Abstract | Links | BibTeX | Tags: Activation, Animals, Cell Proliferation, Chemistry, cytology, Epidermis, Epithelial Cells, function, Genetics, Growth, Hair, hair follicle, Homeostasis, Immunology, Inbred C57BL, ligand, metabolism, Mice, NF-kappa B, NF-kappaB, Nude, Osteoprotegerin, physiology, Proliferation, rank, RANK ligand, Receptor, Receptor Activator of Nuclear Factor-kappa B, signaling, Skin, Skin Transplantation, stem, Stem Cells, Team-Mueller, transgenic, TRANSGENIC MICE, TRANSPLANTATION
@article{duheron_receptor_2011,
title = {Receptor activator of NF-kappaB (RANK) stimulates the proliferation of epithelial cells of the epidermo-pilosebaceous unit},
author = {V Duheron and E Hess and M Duval and M Decossas and B Castaneda and J E Klopper and L Amoasii and J B Barbaroux and I R Williams and H Yagita and J Penninger and Y Choi and F Lezot and R Groves and R Paus and C G Mueller},
doi = {10.1073/pnas.1013054108},
year = {2011},
date = {2011-03-01},
journal = {Proc.Natl.Acad.Sci.U.S.A},
volume = {108},
number = {1091-6490 (Electronic)},
pages = {5342--5347},
abstract = {Receptor activator of NF-kappaB (RANK), known for controlling bone mass, has been recognized for its role in epithelial cell activation of the mammary gland. Because bone and the epidermo-pilosebaceous unit of the skin share a lifelong renewal activity where similar molecular players operate, and because mammary glands and hair follicles are both skin appendages, we have addressed the function of RANK in the hair follicle and the epidermis. Here, we show that mice deficient in RANK ligand (RANKL) are unable to initiate a new growth phase of the hair cycle and display arrested epidermal homeostasis. However, transgenic mice overexpressing RANK in the hair follicle or administration of recombinant RANKL both activate the hair cycle and epidermal growth. RANK is expressed by the hair follicle germ and bulge stem cells and the epidermal basal cells, cell types implicated in the renewal of the epidermo-pilosebaceous unit. RANK signaling is dispensable for the formation of the stem cell compartment and the inductive hair follicle mesenchyme, and the hair cycle can be rescued by Rankl knockout skin transplantation onto nude mice. RANKL is actively transcribed by the hair follicle at initiation of its growth phase, providing a mechanism for stem cell RANK engagement and hair-cycle entry. Thus, RANK-RANKL regulates hair renewal and epidermal homeostasis and provides a link between these two activities},
keywords = {Activation, Animals, Cell Proliferation, Chemistry, cytology, Epidermis, Epithelial Cells, function, Genetics, Growth, Hair, hair follicle, Homeostasis, Immunology, Inbred C57BL, ligand, metabolism, Mice, NF-kappa B, NF-kappaB, Nude, Osteoprotegerin, physiology, Proliferation, rank, RANK ligand, Receptor, Receptor Activator of Nuclear Factor-kappa B, signaling, Skin, Skin Transplantation, stem, Stem Cells, Team-Mueller, transgenic, TRANSGENIC MICE, TRANSPLANTATION},
pubstate = {published},
tppubtype = {article}
}
2010
Noordegraaf Madelon, Flacher Vincent, Stoitzner Patrizia, Clausen Björn E
Functional redundancy of Langerhans cells and Langerin+ dermal dendritic cells in contact hypersensitivity Journal Article
In: The Journal of Investigative Dermatology, vol. 130, no. 12, pp. 2752–2759, 2010, ISSN: 1523-1747.
Abstract | Links | BibTeX | Tags: Animal, Animals, Antigen, Antigens, C-Type, CHS, contact, CONTACT HYPERSENSITIVITY, Dendritic Cells, DEPLETION, DERMAL DENDRITIC CELLS, Dermatitis, DERMIS, Diphtheria Toxin, Disease Models, Epidermis, function, Gene Knock-In Techniques, Genetics, Growth, HAPTEN, Haptens, Heparin-binding EGF-like Growth Factor, Hypersensitivity, Immunology, Inbred C57BL, INDUCTION, Intercellular Signaling Peptides and Proteins, LACKING, Langerhans Cells, LECTIN, Lectins, LYMPH, LYMPH NODE, Lymph Nodes, Mannose-Binding Lectins, metabolism, Mice, mouse, Mutant Strains, Organ Culture Techniques, pathology, Peptides, Poisons, Protein, Proteins, RESPONSES, signaling, Skin, Surface, Team-Mueller, Toxicity
@article{noordegraaf_functional_2010,
title = {Functional redundancy of Langerhans cells and Langerin+ dermal dendritic cells in contact hypersensitivity},
author = {Madelon Noordegraaf and Vincent Flacher and Patrizia Stoitzner and Björn E Clausen},
doi = {10.1038/jid.2010.223},
issn = {1523-1747},
year = {2010},
date = {2010-12-01},
journal = {The Journal of Investigative Dermatology},
volume = {130},
number = {12},
pages = {2752--2759},
abstract = {The relative roles of Langerhans cells (LC), dermal dendritic cells (DC), and, in particular, the recently discovered Langerin(+) dermal DC subset in the induction and control of contact hypersensitivity (CHS) responses remain controversial. Using an inducible mouse model, in which LC and other Langerin(+) DC can be depleted by injection of diphtheria toxin, we previously reported impaired transport of topically applied antigen to draining lymph nodes and reduced CHS in the absence of all Langerin(+) skin DC. In this study, we demonstrate that mice with a selective depletion of LC exhibit attenuated CHS only upon sensitization with a low hapten dose but not with a high hapten dose. In contrast, when painting a higher concentration of hapten onto the skin, which leads to increased antigen dissemination into the dermis, CHS is still diminished in mice lacking all Langerin(+) skin DC. Taken together, these data suggest that the magnitude of a CHS reaction depends on the number of skin DC, which have access to the hapten, rather than on the presence or absence of a particular skin DC population. LC and (Langerin(+)) dermal DC thus seem to have a redundant function in regulating CHS.},
keywords = {Animal, Animals, Antigen, Antigens, C-Type, CHS, contact, CONTACT HYPERSENSITIVITY, Dendritic Cells, DEPLETION, DERMAL DENDRITIC CELLS, Dermatitis, DERMIS, Diphtheria Toxin, Disease Models, Epidermis, function, Gene Knock-In Techniques, Genetics, Growth, HAPTEN, Haptens, Heparin-binding EGF-like Growth Factor, Hypersensitivity, Immunology, Inbred C57BL, INDUCTION, Intercellular Signaling Peptides and Proteins, LACKING, Langerhans Cells, LECTIN, Lectins, LYMPH, LYMPH NODE, Lymph Nodes, Mannose-Binding Lectins, metabolism, Mice, mouse, Mutant Strains, Organ Culture Techniques, pathology, Peptides, Poisons, Protein, Proteins, RESPONSES, signaling, Skin, Surface, Team-Mueller, Toxicity},
pubstate = {published},
tppubtype = {article}
}
Flacher Vincent, Tripp Christoph H, Stoitzner Patrizia, Haid Bernhard, Ebner Susanne, Frari Barbara Del, Koch Franz, Park Chae Gyu, Steinman Ralph M, Idoyaga Juliana, Romani Nikolaus
Epidermal Langerhans cells rapidly capture and present antigens from C-type lectin-targeting antibodies deposited in the dermis Journal Article
In: The Journal of Investigative Dermatology, vol. 130, no. 3, pp. 755–762, 2010, ISSN: 1523-1747.
Abstract | Links | BibTeX | Tags: Animals, Antibodies, antibody, Antigen, Antigen Presentation, ANTIGEN PRESENTING CELLS, Antigen-Presenting Cells, Antigens, BASEMENT MEMBRANE, C-Type, C-type lectin, CD103, CD8+ T cells, Cell Division, Cell Movement, Cells, Culture, Cultured, cytology, Dendritic Cells, DERMATOLOGY, DERMIS, Epidermal Cells, Epidermis, function, Human, Humans, Immunology, in situ, IN VITRO, In vivo, Inbred BALB C, Inbred C57BL, Injections, Intradermal, Langerhans Cells, LECTIN, Lectins, mAb, Mannose-Binding Lectins, Membrane, Mice, Monoclonal, mouse, murine, Pharmacology, Proliferation, Protein, Receptor, Skin, Surface, T CELLS, T-CELLS, T-Lymphocytes, Team-Mueller, Vaccination, vaccine, Vaccines
@article{flacher_epidermal_2010,
title = {Epidermal Langerhans cells rapidly capture and present antigens from C-type lectin-targeting antibodies deposited in the dermis},
author = {Vincent Flacher and Christoph H Tripp and Patrizia Stoitzner and Bernhard Haid and Susanne Ebner and Barbara Del Frari and Franz Koch and Chae Gyu Park and Ralph M Steinman and Juliana Idoyaga and Nikolaus Romani},
doi = {10.1038/jid.2009.343},
issn = {1523-1747},
year = {2010},
date = {2010-03-01},
journal = {The Journal of Investigative Dermatology},
volume = {130},
number = {3},
pages = {755--762},
abstract = {Antigen-presenting cells can capture antigens that are deposited in the skin, including vaccines given subcutaneously. These include different dendritic cells (DCs) such as epidermal Langerhans cells (LCs), dermal DCs, and dermal langerin+ DCs. To evaluate access of dermal antigens to skin DCs, we used mAb to two C-type lectin endocytic receptors, DEC-205/CD205 and langerin/CD207. When applied to murine and human skin explant cultures, these mAbs were efficiently taken up by epidermal LCs. In addition, anti-DEC-205 targeted langerin+ CD103+ and langerin- CD103- mouse dermal DCs. Unexpectedly, intradermal injection of either mAb, but not isotype control, resulted in strong and rapid labeling of LCs in situ, implying that large molecules can diffuse through the basement membrane into the epidermis. Epidermal LCs targeted in vivo by ovalbumin-coupled anti-DEC-205 potently presented antigen to CD4+ and CD8+ T cells in vitro. However, to our surprise, LCs targeted through langerin were unable to trigger T-cell proliferation. Thus, epidermal LCs have a major function in uptake of lectin-binding antibodies under standard vaccination conditions.},
keywords = {Animals, Antibodies, antibody, Antigen, Antigen Presentation, ANTIGEN PRESENTING CELLS, Antigen-Presenting Cells, Antigens, BASEMENT MEMBRANE, C-Type, C-type lectin, CD103, CD8+ T cells, Cell Division, Cell Movement, Cells, Culture, Cultured, cytology, Dendritic Cells, DERMATOLOGY, DERMIS, Epidermal Cells, Epidermis, function, Human, Humans, Immunology, in situ, IN VITRO, In vivo, Inbred BALB C, Inbred C57BL, Injections, Intradermal, Langerhans Cells, LECTIN, Lectins, mAb, Mannose-Binding Lectins, Membrane, Mice, Monoclonal, mouse, murine, Pharmacology, Proliferation, Protein, Receptor, Skin, Surface, T CELLS, T-CELLS, T-Lymphocytes, Team-Mueller, Vaccination, vaccine, Vaccines},
pubstate = {published},
tppubtype = {article}
}
2009
Bosisio M R, Maisonneuve C, Gregoire S, Kettaneh A, Mueller C G, Bridal S L
Ultrasound biomicroscopy: a powerful tool probing murine lymph node size in vivo Journal Article
In: Ultrasound Med.Biol., vol. 35, no. 1879-291X (Electronic), pp. 1209–1216, 2009.
Abstract | BibTeX | Tags: Acoustic, Animals, Axilla, cancer, Cell Count, Female, Graft Rejection, Hyperplasia, immunodeficiency, In vivo, Inbred C57BL, inflammation, LYMPH, LYMPH NODE, Lymph Nodes, Male, methods, Mice, Microscopy, murine, Observer Variation, pathology, SKIN GRAFT, Skin Transplantation, Team-Mueller, transgenic, TRANSGENIC MICE, ultrasonography
@article{bosisio_ultrasound_2009,
title = {Ultrasound biomicroscopy: a powerful tool probing murine lymph node size in vivo},
author = {M R Bosisio and C Maisonneuve and S Gregoire and A Kettaneh and C G Mueller and S L Bridal},
year = {2009},
date = {2009-07-01},
journal = {Ultrasound Med.Biol.},
volume = {35},
number = {1879-291X (Electronic)},
pages = {1209--1216},
abstract = {Invasive cell-counting in lymph node (LN) is the current reference to assess LN changes due to inflammation, immunodeficiency and cancer in murine models. This work evaluates whether ultrasound biomicroscopy (UBM) can measure LN size alterations noninvasively for a large range of sizes (0.1 mm3 to 22 mm3). Correlation was assessed (rho = 0.91, p textless 0.0001) between invasive cell count and LN volume estimated with UBM (24, 2 to 28-week-old, C57BL/6 mice; 13 same-strain, transgenic mice presenting LN hyperplasia). UBM LN modification screening was applied in a skin-graft rejection model and compared with cell-counting (15 mice). UBM LN-size follow-up with fine temporal sampling was demonstrated from 9 d of age (minimum area 0.13 mm2). Reliability (intraclass correlation coefficient [ICC] textgreater 0.84) and variability of UBM evaluations compared favourably with invasive cell count. UBM provides a noninvasive alternative to cell-counting in mice for early detection and longitudinal screening of LN modifications. This can enable significant reduction in the number of mice and exploration of LNs that would be too small to dissect for cell count},
keywords = {Acoustic, Animals, Axilla, cancer, Cell Count, Female, Graft Rejection, Hyperplasia, immunodeficiency, In vivo, Inbred C57BL, inflammation, LYMPH, LYMPH NODE, Lymph Nodes, Male, methods, Mice, Microscopy, murine, Observer Variation, pathology, SKIN GRAFT, Skin Transplantation, Team-Mueller, transgenic, TRANSGENIC MICE, ultrasonography},
pubstate = {published},
tppubtype = {article}
}
Flacher Vincent, Sparber Florian, Tripp Christoph H, Romani Nikolaus, Stoitzner Patrizia
Targeting of epidermal Langerhans cells with antigenic proteins: attempts to harness their properties for immunotherapy Journal Article
In: Cancer immunology, immunotherapy: CII, vol. 58, no. 7, pp. 1137–1147, 2009, ISSN: 1432-0851.
Abstract | Links | BibTeX | Tags: Active, Animals, Antibodies, antibody, Antigen, Antigens, BLOOD, C-Type, cancer, CD, CD4-Positive T-Lymphocytes, CD4+ T cells, CD8-Positive T-Lymphocytes, CD8+ T cells, Dendritic Cells, DERMATOLOGY, DERMIS, Epidermis, Growth, Human, Humans, immune response, IMMUNE-RESPONSES, Immunization, Immunology, Immunotherapy, in situ, In vivo, Inbred BALB C, Inbred C57BL, INDUCTION, Langerhans Cells, LECTIN, Lectins, LYMPH, LYMPH NODE, Lymph Nodes, Major Histocompatibility Complex, Mannose-Binding Lectins, metabolism, methods, MHC class I, MHC class I molecules, Mice, Neoplasm, Neoplasms, OVALBUMIN, Patients, PROGENITORS, Protein, Proteins, RESPONSES, review, Skin, T CELLS, T-CELLS, Team-Mueller, therapy, tumor
@article{flacher_targeting_2009,
title = {Targeting of epidermal Langerhans cells with antigenic proteins: attempts to harness their properties for immunotherapy},
author = {Vincent Flacher and Florian Sparber and Christoph H Tripp and Nikolaus Romani and Patrizia Stoitzner},
doi = {10.1007/s00262-008-0563-9},
issn = {1432-0851},
year = {2009},
date = {2009-07-01},
journal = {Cancer immunology, immunotherapy: CII},
volume = {58},
number = {7},
pages = {1137--1147},
abstract = {Langerhans cells, a subset of skin dendritic cells in the epidermis, survey peripheral tissue for invading pathogens. In recent functional studies it was proven that Langerhans cells can present exogenous antigen not merely on major histocompatibility complexes (MHC)-class II molecules to CD4+ T cells, but also on MHC-class I molecules to CD8+ T cells. Immune responses against topically applied antigen could be measured in skin-draining lymph nodes. Skin barrier disruption or co-application of adjuvants was required for maximal induction of T cell responses. Cytotoxic T cells induced by topically applied antigen inhibited tumor growth in vivo, thus underlining the potential of Langerhans cells for immunotherapy. Here we review recent work and report novel observations relating to the potential use of Langerhans cells for immunotherapy. We investigated the potential of epicutaneous immunization strategies in which resident skin dendritic cells are loaded with tumor antigen in situ. This contrasts with current clinical approaches, where dendritic cells generated from progenitors in blood are loaded with tumor antigen ex vivo before injection into cancer patients. In the current study, we applied either fluorescently labeled protein antigen or targeting antibodies against DEC-205/CD205 and langerin/CD207 topically onto barrier-disrupted skin and examined antigen capture and transport by Langerhans cells. Protein antigen could be detected in Langerhans cells in situ, and they were the main skin dendritic cell subset transporting antigen during emigration from skin explants. Potent in vivo proliferative responses of CD4+ and CD8+ T cells were measured after epicutaneous immunization with low amounts of protein antigen. Targeting antibodies were mainly transported by langerin+ migratory dendritic cells of which the majority represented migratory Langerhans cells and a smaller subset the new langerin+ dermal dendritic cell population located in the upper dermis. The preferential capture of topically applied antigen by Langerhans cells and their ability to induce potent CD4+ and CD8+ T cell responses emphasizes their potential for epicutaneous immunization strategies.},
keywords = {Active, Animals, Antibodies, antibody, Antigen, Antigens, BLOOD, C-Type, cancer, CD, CD4-Positive T-Lymphocytes, CD4+ T cells, CD8-Positive T-Lymphocytes, CD8+ T cells, Dendritic Cells, DERMATOLOGY, DERMIS, Epidermis, Growth, Human, Humans, immune response, IMMUNE-RESPONSES, Immunization, Immunology, Immunotherapy, in situ, In vivo, Inbred BALB C, Inbred C57BL, INDUCTION, Langerhans Cells, LECTIN, Lectins, LYMPH, LYMPH NODE, Lymph Nodes, Major Histocompatibility Complex, Mannose-Binding Lectins, metabolism, methods, MHC class I, MHC class I molecules, Mice, Neoplasm, Neoplasms, OVALBUMIN, Patients, PROGENITORS, Protein, Proteins, RESPONSES, review, Skin, T CELLS, T-CELLS, Team-Mueller, therapy, tumor},
pubstate = {published},
tppubtype = {article}
}
2008
Tripp Christoph H, Haid Bernhard, Flacher Vincent, Sixt Michael, Peter Hannes, Farkas Julia, Gschwentner Robert, Sorokin Lydia, Romani Nikolaus, Stoitzner Patrizia
The lymph vessel network in mouse skin visualised with antibodies against the hyaluronan receptor LYVE-1 Journal Article
In: Immunobiology, vol. 213, no. 9-10, pp. 715–728, 2008, ISSN: 0171-2985.
Abstract | Links | BibTeX | Tags: anatomy & histology, Animals, Antibodies, antibody, BLOOD, Blood Vessels, CD31, Cell Movement, Culture, cytology, Dendritic Cells, DERMAL DENDRITIC CELLS, DERMATOLOGY, DERMIS, EAR, electron microscopy, ENDOTHELIUM, Expression, GLYCOPROTEIN, Glycoproteins, hyaluronan, imiquimod, Immunology, Immunotherapy, In vivo, Inbred BALB C, Inbred C57BL, Langerhans Cells, ligand, LYMPH, LYMPH NODE, Lymph Nodes, LYMPHATIC VESSEL, Lymphatic Vessels,